Real-time Scheduling and Forecasting System for Urban Flood in Coastal Cities

Prof. Zongxue Xu

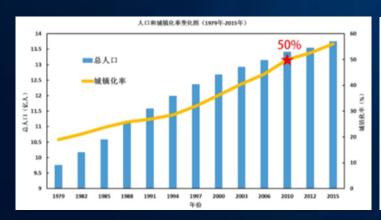
College of Water Sciences, Beijing Normal University

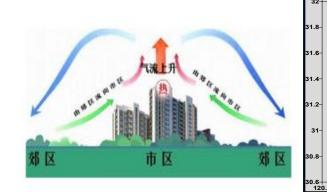
Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology

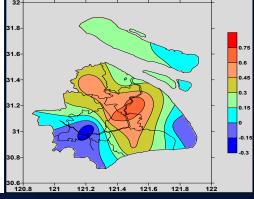
Content

PART I Background

PART II Integrated Model and Forecasting
Systems


PART III A Case Study in Fuzhou City


PART IV Conclusion

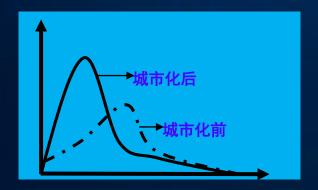


Impact of Urbanization and Climate Change

- □ IPCC AR5: 全球变暖,极端降水和洪涝灾害更为频繁; 气候变化引起的全球性风险大多集中在城市..... Climate change, more extreme precipitation and flood disasters; most of the global risks caused by climate change impact cities.
- 中国进入城市化快速发展阶段(从2000年30%发展到2018年59.6%), 热岛效应及雨岛效应增强 China is undergoing rapid urbanization(urbanization rate: from 30% in 2000 to 59.6% in 2018) with increasing urban heat island effect and rain island effect.

中国城市化进程加速 Urbanization development in China

Picture Source: 张建云等, 2019


城市热岛效应 Urban heat Island effect

城市雨岛效应(沪,丁一汇) Rain island effect

Impact of Urbanization and Climate Change

Urban development and construction have brought about a profound impact

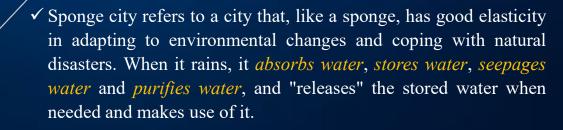
- Frequent flood disasters -- Natural drainage pattern changes, runoff yield increases, confluence speeds up, river and lake water systems are invaded, and stormwater storage capacity decreases
- □ *Urban water shortage* -- the demand for water is increasing, and the relationship between supply and demand of water resources is becoming increasingly tense
- Water environment and water ecological deterioration -- urban production and household sewage discharge continues to increase, and the load of non-point source pollution increases, exceeding the environmental carrying capacity of river and lake systems

Urban Flooding/Waterligging in China

Street becomes rivers, subway becomes underground rivers

—— Urban flooding/waterlogging in 2020

Subway in Guangzhou


Jingdezhen, Jiangxi

Bazhong, Sichuan

Effective Attempt

Sponge City

✓ Sponge city construction should consider the *natural precipitation*, *surface water* and *groundwater system*. Coordinating *water supply*, *drainage* and other links of water recycling. Consider both complexity and longevity in the <u>system</u>.

Typical Sponge City Construction

Permeable Pavement

Rain Garden

Green Roof

Vegetative Swale

Bio-Retention Cell

Infiltration Trench

Effective Attempt

Real-time Scheduling and Forecasting

Data layer

Data collection Data storage Data mining

Model layer

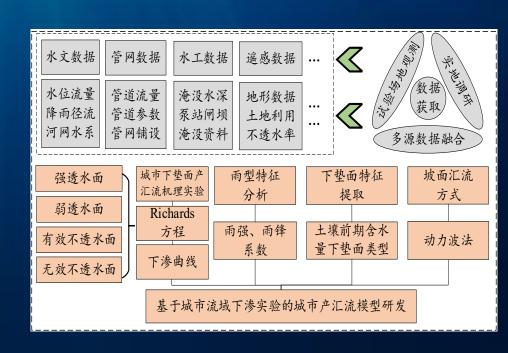
Hydrology Model Hydrodynamic Mode Statistical Model Machine Learning Model

Application

Flood forecasting system Real-time dynamic data Flood evolution analysis Flood impact assessment

Picture Source: 王浩

✓ System Integration: Real-time Flood Simulation and Analysis System

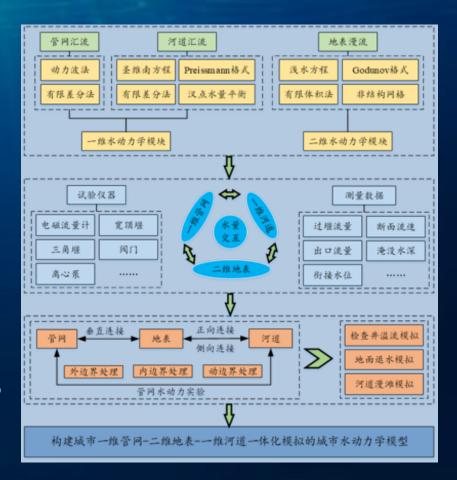

Hydrological Model

Computational Method:

- Runoff generation: Horton infiltration model
- Overland flow: Nonlinear reservoir model

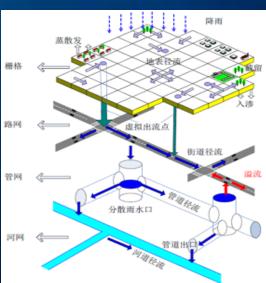
Research Fields:

- The complex topography of the city, with Complex hydrological processes
- Parametric uncertainty in urban underlying surface
- Applicability of hydrological models


Hydrodynamic Model

Computational Method:

- 1D: Preissmann scheme, finite difference method
- •2D: Godunov scheme, finite volume method


Research Fields:

- Alternating pressure and non-pressure flow
- Coupling mechanism of pipelines, river and ground
- The complex topography of the city
- Balance the need to be accurate with the need to be fast
- GPU parallel computing

Multiprocess in Urban Water Exchange

Surface Runoff

Overland Flow

Pipeline Flow

Stream Flow

Picture Source: Pan et al., 2012

Multiprocess in Urban Water Exchange

Flow routing model in subareas

$$\begin{cases} Q = \frac{A^{5/3}S^{1/2}}{nP^{2/3}} & Manning formula \\ \frac{\partial V}{\partial t} = A\frac{\partial d}{\partial t} = A \cdot i_{(t)} - Q_{(t)} & Water balance equation \end{cases}$$

$$Newton-Raphson Method$$

$$\frac{\partial d}{\partial t} = i_{(t)} - \frac{W}{A \cdot n} (d - d_s)^{5/3} S^{1/2}$$

$$\frac{d_1 - d_2}{\Delta t} = i - \frac{WS^{1/2}}{A \cdot n} \left(d_1 + \frac{1}{2} (d_2 - d_1) - d_s \right)^{5/3}$$

Flow routing model in drainage pipelines based on dynamic wave method

$$\begin{cases} \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0 \\ \frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + gA \frac{\partial H}{\partial x} + g \frac{n^2 Q |Q|}{AR^{4/3}} = 0 \\ Momentum Equation \end{cases} \begin{cases} \frac{\partial Q}{\partial t} - 2Av \frac{\partial A}{\partial t} - v^2 \frac{\partial A}{\partial x} + gA \frac{\partial H}{\partial x} + gAS_f = 0 \\ \frac{\partial H}{\partial t} = \frac{\sum Q_f}{\omega} \end{cases}$$

Overland flow on urban ground based on shallow water equation

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = \mathbf{S} \quad \mathbf{U} = \begin{bmatrix} h \\ h u \\ h v \end{bmatrix}, \mathbf{F} = \begin{bmatrix} h u \\ h u^2 + g h^2 / 2 \\ h u v \end{bmatrix}, \mathbf{G} = \begin{bmatrix} h v \\ h u v \\ h v^2 + g h^2 / 2 \end{bmatrix}, \mathbf{S} = \begin{bmatrix} 0 \\ g h \left(S_{fx} + S_{0x} \right) \\ g h \left(S_{fy} + S_{0y} \right) \end{bmatrix}$$

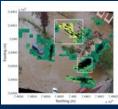
$$S_{fx} = -\frac{n^2 u \sqrt{u^2 + v^2}}{h^{4/3}}, S_{fy} = -\frac{n^2 v \sqrt{u^2 + v^2}}{h^{4/3}}, S_{0x} = -\frac{\partial z_b}{\partial x}, S_{0y} = -\frac{\partial z_b}{\partial y}$$

Deal with the local terrain

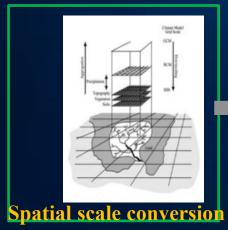
<mark>固壁边界法(Building hole, BH);</mark>设定高程法(Building block, BB);人工加糙法(Building resistance, BR);容积率浅水方程法(Building porosity, BP)

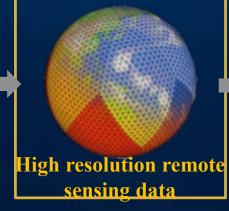
Application of Remote Sensing

Multi-source Data Fusion



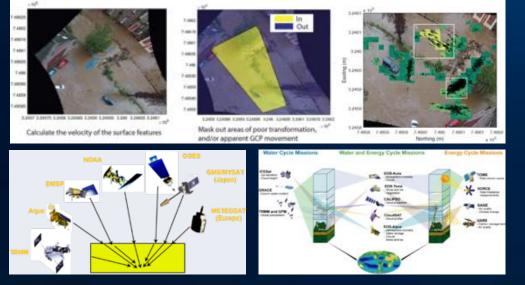
Satellite Remote Sensing +

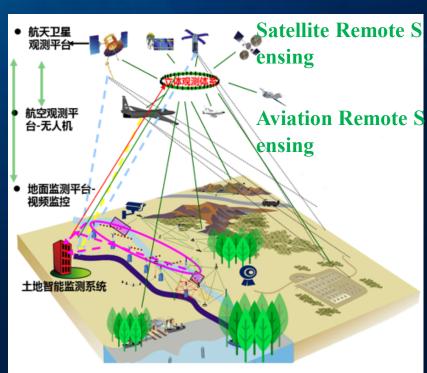




Gauge Observation

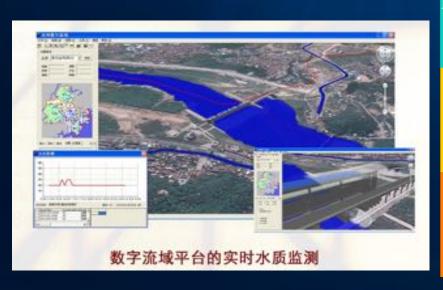
Data Mining





Application of Remote Sensing

- > Remote sensing monitoring
- > Flood feature extraction
- Remote sensing imagery interpretation
 - Flood area extraction



Picture Source: http://www.otitan-hf.com/solution.php?tid=266

Integrated Model and Forecasting Systems

- Integrated hydrological models, hydrodynamic models, and machine learning models
- > Real-time forecasting by using models

Scheduling Layer

Scheduling pattern

- Scheduling with experience
- Scheduling with pre-arranged planning
- Scheduling with smart algorithm

Forecasting Layer

Key data to forecast

- Water level in key river section
- Water qualityCity roads

- Inundation in the area
- Pipeline state

Model Layer

Coupled models

- Runoff generation
- Flow concentration
- Overland flow

Other models

- Data based model
- Numerical weather model

Data Layer

Monitoring && Collection

- GIS data
- RS data
- Urban stations data
- History inundation

Preprocessing

- Data mining
- Data fusion
- Data assimilation
- Scale transformation

Related Technology

Deep Learning

Deep neural networks were used to fit the relationship among the complex process of flood.

Flood Monitoring

Abundant data sources are an important support for improving future flood prediction.

Data Mining

Based on the abundant multisource data, the key data in the flood can be obtained for model construction, calibration and verification.

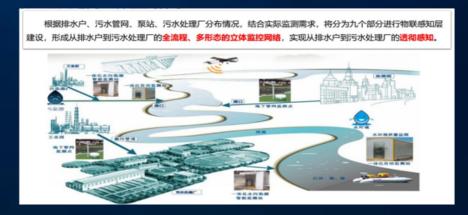
Parallel Computing

Compared with the CPU, the GPU calculation efficiency is significantly higher, which is conducive to the real-time calculation of flood.

Urban Flood Management with Rainfall Forecasting

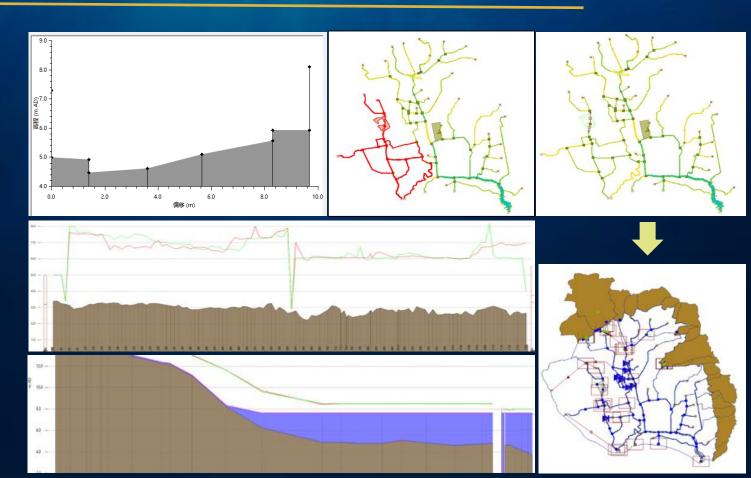
Real-Time Simulation and Analysis System

- Monitoring and Warning:


 To find the flood threat
- Prediction and Forecasting:
 To analyze the flood threat
- Scheduling and Decision:

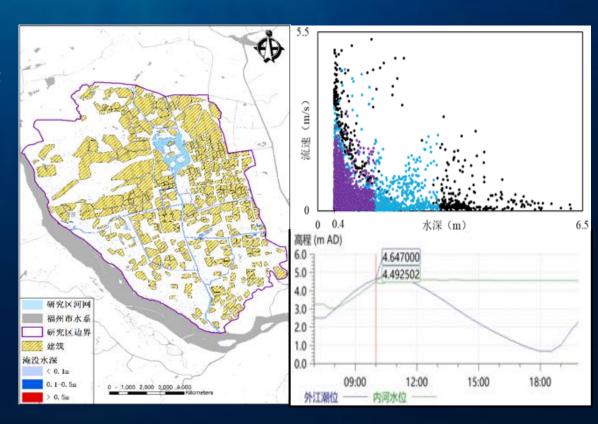
 To analyze the flood threat
- Command and Control:

 To solve the flood threat


5G+AI+AR+VR Big Data+AI+Cloud Industry 4.0 Computing

Step 1: Data Pre-processing Model Development

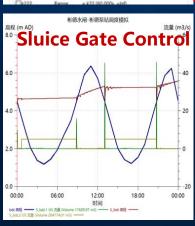
Model Development


- ✓ Land use data
- ✓ Pipelines
- ✓ Manholes
- ✓ Dam, Storage,
 Pumps...

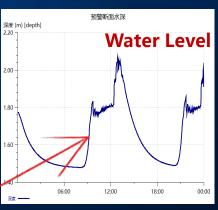
Step 2: Urban Flood Simulation

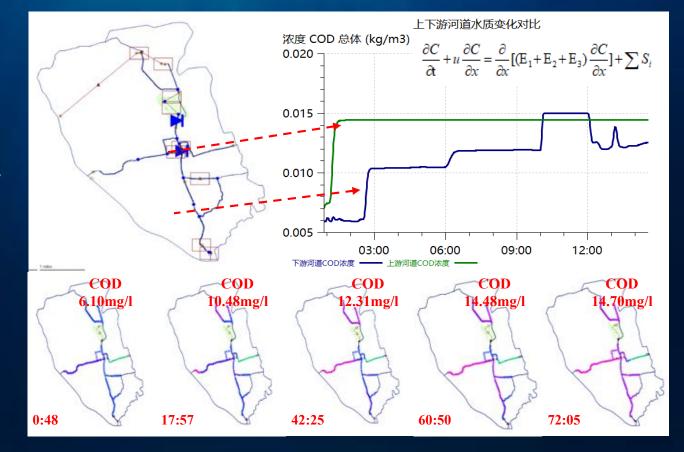
Urban Flood Simulation

- ✓ Model Calibration
- ✓ Grid Generation
- ✓ High resolution terrain data


Step 3: Hydraulic Structure Scheduling

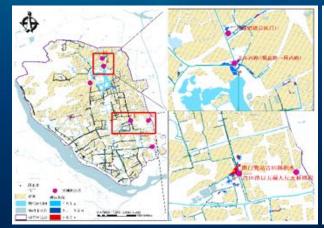
Reservoir Flood Control

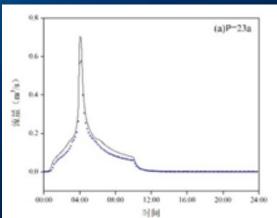

- ✓ River-Lake-Reservoir
 Control
- ✓ Gate-Pump-Weir Control
- ✓ Smart Control

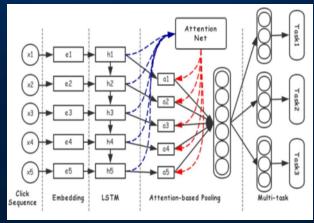


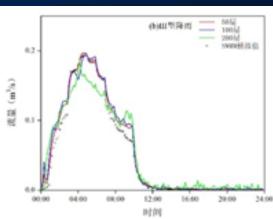
Step 4: Water Quality Simulation

Water Quality Simulation

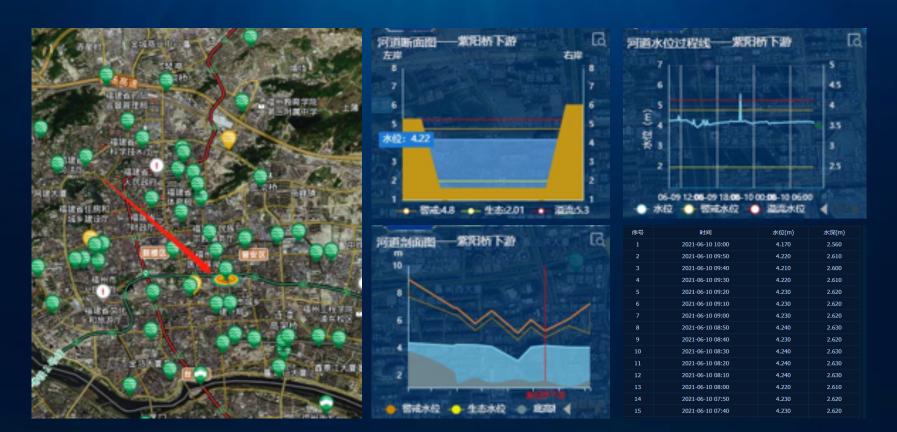

- ✓ COD, BOD, DO, TP....
- ✓ Temporal Evolution
- ✓ Spatial Evolution

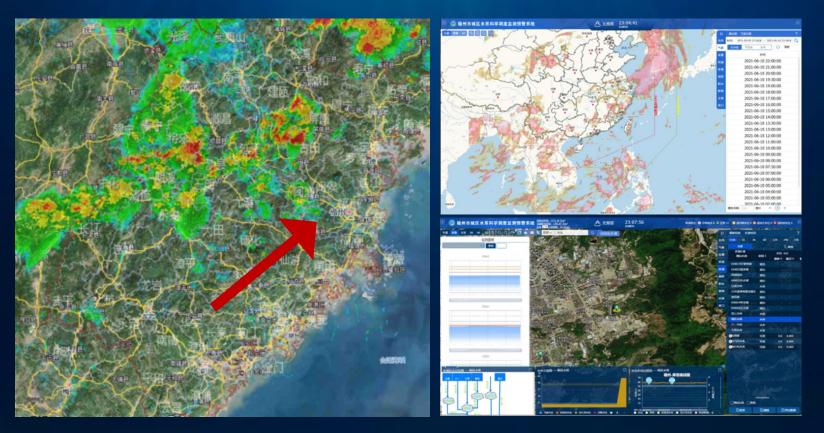


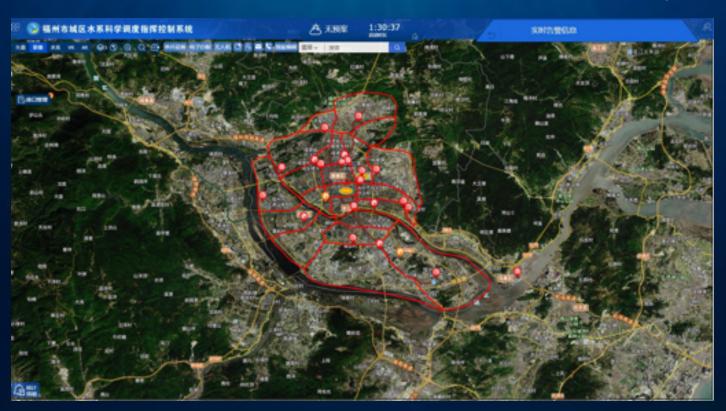

Step 5: Urban Flood Forecasting


Flood Forecasting

- ✓ Physically-based ModelForced Method
- ✓ Data Forced Method






Function 1: Query and Monitoring of Rainfall, Typhoon, Inundation, Water Level.

Function 2: Generation and Optimization of Scheduling Schemes

Function 3: Real-time Urban Flood Simulation and Results Analysis

Function 4: Real-time Urban Scheduling System

I 水文水动力学模型是实时预报的关键

Hydrodynamic model is the key to the real-time forecasting

研发集成的,精确的,效率高的水文水动力模型,是洪涝实时预报系统的 核心和关键。

The development of an integrated, accurate and efficient hydrodynamic model is the core and key of the real-time flood forecasting system.

Ⅱ 多学科交叉助力解决洪涝难题

Multidisciplinary collaboration helps to solve the problem of urban flooding/waterlogging

结合水文、水动力、遥感、人工智能等多领域、多学科,优势 互补,建立完善的数据-模型-预测-指挥一体化智慧管理系统。 Combined with hydrology, hydrodynamics, remote sensing, artificial intelligence and other fields, multi-disciplines, complementary the respective advantages, to establish a datamodel-forecasting-command integrated intelligent management system.

Thank You for Your Attention!

Prof. Zongxue Xu

College of Water Sciences, Beijing Normal University

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology

E-mail: zxxu@bnu.edu.cn

Website: http://www.zxxu.org/