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Review of
1) Theories of river ice hydraulics ;
2) Ice condition forecast and numerical models;
3) Observation and mitigation: equipment and technology



2015)

(4
s
£
o
LN
A
£
=)
R
S
1S
(]
2
('

1, Background




1, Background

Heilong (or Amur) River and the Inner Mongolia region in China;
From lower latitude to higher latitude , resulting in reversed breakup conditions that can lead to frequent ice jam

formation during breakup in certain reaches. Significant ice jam events occur every 3 years
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1, Background
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1. Background
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River ice formation process (White, 1999) Ice process during winter and spring ({80

Not only involves the process of hydraulics and thermodynamics, but also accompanied by internal structure change in ice,

such as density, porosity, etc and mechanical movement.




1. Background

Ice process forecast, simulation and ice flood prevention

Monitoring Mechanics of river ice Forecast and modeling Prevention and control
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2‘ Review oOf theories of river ice hydraulics

Red font: Current research challenges
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2s Review oOf Ice condition forecast and numerical models
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2, Review of Observation and mitigation: equipment and technology

Monitoring: seepage flow in ice jam
internal ice resistance
physical structure evolution in ice jam

Mobile ice-
water
condition

(Medium
scale )

Cross-sectional Ice
thickness and water
depth along the path

chservation ||

Identification

Dragged by
snowmobile, etc.
Ice-water
condition
double- by hovercraft
frequency
radar
by amphibious
vehicle
Moblle Rang of riverbank
image

erosion

Mohile
measure

Seepage in ice jam

Remote
sensing and

portable radar

I—l Single-point ice thickness

Visual measuring
instrument

Ice thickness , water depth,
thickness of frazil slush

telemetry

(Large scale )

Friction in ice jam

Long-distance lce
thickness along

longitudinal sections

Low-altitude Image ldentification

aireraft and radar Parameters of ice dams

Freeze-up
concentration Parameters of ice jams
satellite Channel storage of
remote .
. ice
sensing

First freeze-up
location




2~ Review of Observation and mitigation: equipment and technology
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3. Recent works of our group @Instrument

B A new dual frequency ground penetrating radar(GPR) was developed to measure the ice thickness and water depth.

1500MHz transmitter
oty —t)

1500MHz receiver 100MHz transmitter H =

2 &,
‘ Transmitter Receiver
d _ H - ct;
Transmitter antenna Receiver antenna - .-f i 2 \/:
, i

Ice cover N—m|-1
: - 1
River bed 100MHz receiver ny(m):W kz_(; X(k)y(k+m) nZO,l, ...... ,N —1

Different dielectric constant is the base
of GPR measurement

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 1m0 180 190 200 20

.10"'!“'\ ' ‘u lJ |' ——— '. = R . —
| | === |

N

o Calibration and measuring data !




3. Recent works of our group @®Instrument

Type integrated by UAV portable type  fixed type
Dimensions 80x79x24cm 105x105x50 cm 27x12x70 cm 105x105x50 cm
Water depth <16 m - - -
Ice thickness <6m <6m <6m <6m
Resolution mm mm mm mm
T GPS cm cm cm cm
% - ~ Temperature 40~+60°C " -40~+60°C -40~+60°C -40~+60°C
X
‘F
integrated type by UAV fixed type
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3. Recent works of our group @Instrument
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3. Recent works of our group @Ice condition forecast

Longitudinal cracks in sidewall
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3. Recent works of our group ®Modeling
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Two-dimensional River Ice and Sediment Coupled Model
(RICES2D)
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B A two-dimensional flow-ice-sand coupling model for northern rivers was established
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3. Recent works of our group @Lab and experiments

Low temperature ice-hydrodynamics experiment platform
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3. Recent works of our group @Lab and experiments
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3. Recent works of our group @Lab and experiments

BMSome critical relationship for safe operation of water diversion project during ice period was presented
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3. Recent works of our group & Measures and application

HMice jam risk (Why), jam location(Where), time for prevention(When), effect measures(How)

= et e g —
= i i O -
-

{ : :
I'?."H'f A T o O -
2019.4.6-10:30 Mohe section(Heilongjiang River)

i %;\"!_‘.;'q




3. Recent works of our group & Measures and application

HMice jam risk (Why), jam location(Where), time for prevention(When), effect measures(How)
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3. Recent works of our group & Measures and application

HMice jam risk (Why), jam location(Where), time for prevention(When), effect measures(How)
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3. Recent works of our group & Measures and application

BOther applications
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