

Flood hazard and risk

- assessment, mapping and mitigation -

Karl-Erich Lindenschmidt

Global Institute for Water Security University of Saskatchewan, Canada

Global Institute for Water Security

photo by Karl-Erich Lindenschmidt (6 April 2011)

Lindenschmidt, K.-E. (2020) *River ice processes and ice flood forecasting – a guide for practitioners and students*. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-28679-8 (used with permission)

DOI: 10.1111/jfr3.12697

ORIGINAL ARTICLE

Evaluation of the implications of ice-jam flood mitigation measures

Apurba Das [Karl-Erich Lindenschmidt [

Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Correspondence

Apurba Das, Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada. Email: apurba.das@usask.ca

Abstract

Ice-jam flood risk management requires new approaches to reduce flood damages. Although many structural and non-structural measures are implemented to reduce the impacts of ice-jam flooding, there are still many challenges in identifying appropriate strategies to reduce the ice-jam flood risk along northern rivers. The main purpose of this study is to provide a novel methodological framework to assess the feasibility of various ice-jam flood mitigation measures based on risk analysis. A total of three ice-jam flood mitigation measures (artificial breakup, sediment dredging and dike installation) were examined

https://doi.org/10.1111/jfr3.12697

Risk = Hazard × Vulnerability

Cross-sections lowered to mimic sediment dredged

Cross-sections lowered to mimic sediment dredged

Lindenschmidt, K.-E. (2020) *River ice processes and ice flood forecasting* – *a guide for practitioners and students*. Springer Nature Switzerland AG. 267 pp. https://doi.org/10.1007/978-3-030-28679-8

Artificially broken up ice cover along Red River, Canada

photo by Karl-Erich Lindenschmidt (6 April 2011)

River Ice Processes and Ice Flood Forecasting

A Guide for Practitioners and Students

Authors (view affiliations)

Karl-Erich Lindenschmidt

https://doi.org/10.1007/978-3-030-28679-8

Ice-jam flood probability maps

Average flood depth for each mitigation option

Risk = Hazard × Vulnerability

Ice-jam flood risk maps

base run

artificial breakup

Total risk for each mitigation option

Thank you

Global Institute for Water Security USASK

