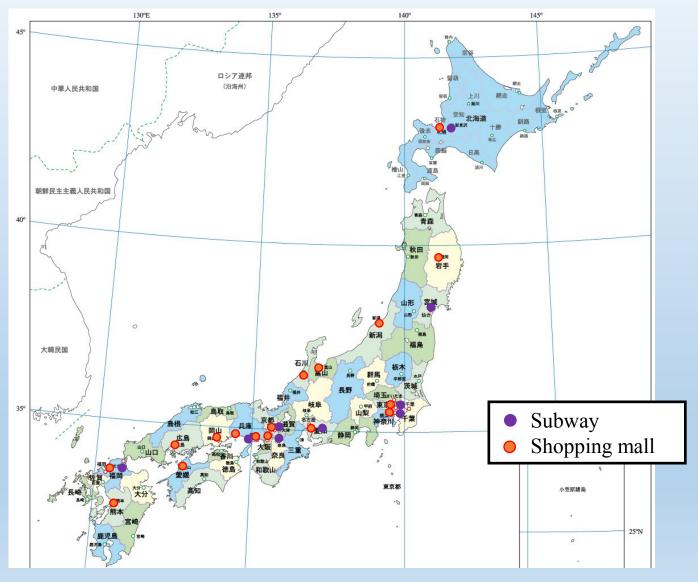
Underground Space Inundation and Evacuation

T. Ishigaki and T. Ozaki (Kansai Univ.) K. Toda and Y. Baba (Kyoto Univ.)

Contents

Underground Space Inundation

- ➤ What happened?
- ➤ What will happen?


Evacuation from Underground Space

- >Static flooding (hydrostatic pressure)
- ➤ Dynamic flooding (hydrostatic and hydrodynamic force)

Underground space in Japan

Scale		Underground space	Numbers	
laı	rge	Subway	642 stations	
		Shopping mall	78 malls	
		Parking	many	
		Underpass	many	
small		Basement	many	

Japanese Underground Space

Under sea level area in Japanese mega cities, Tokyo, Nagoya, Osaka

Floods

Force

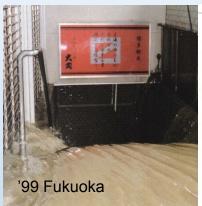
- Typhoon or Heavy Rainfall > Pluvial or Fluvial floods
- Typhoon > Storm surge | Earthquake > Tsunami

>Type of flood

- Static flooding: U<1m/s, hydrostatic pressure
- Dynamic flooding: U>1m/s, hydrostatic & hydrodynamic force
- River bank erosion: flow velocity or loss of stability
- Rise of ground water: hydrostatic pressure

>Impact parameters of flood

- Flood depth: 0.5m, 2m
- Duration of flood: some hours, several days, weeks
- Flow velocity: 1m/s, 2m/s, 3-5m/s
- Velocity of water rise:

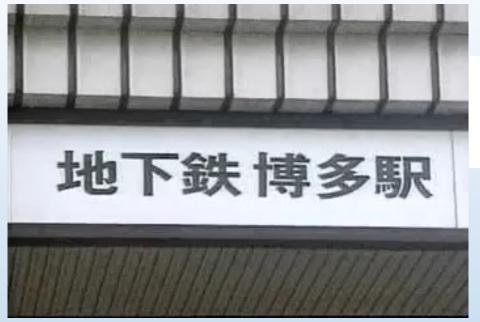

(after Non Structural Flood Plain Management, ICPR)

Underground inundation

東京、赤坂見附 1993(日本河川協会)

2000.9.11-12,名古屋

近畿 突発豪雨


New York 2012.10.29

Underground inundation in Japan & World

Year	Site	Underground space	Flooding
1999 June	Fukuoka	subway, basement, mall	pluvial, fluvial
1999 July	Tokyo	basement	pluvial
2000 Sep.	Nagoya	subway	pluvial, fluvial
2003 July	Fukuoka	subway, basement, mall	pluvial, fluvial
2008 July	Kyoto	underpass	pluvial
2011 Mar.	Natori	railway tunnel	tsunami
2011 Aug.	Osaka	underground mall	pluvial
2011 Sep.	Kasugai	underpass	pluvial
2013 Sep.	Kyoto	subway	fluvial

Year	Site	Nation	Underground space	Flooding
2001 July	Seoul	Korea	subway	pluvial
2002 Aug.	Europe	Germany etc.	subway	fluvial
2003 Sep.	Busan, Masan	Korea	basement, parking	storm surge
2012 Oct.	New York	USA	subway, tunnel	storm surge

1999 Fukuoka (NHK-TV News)

Fluvial flooding

2003 Fukuoka (NHK-TV News)

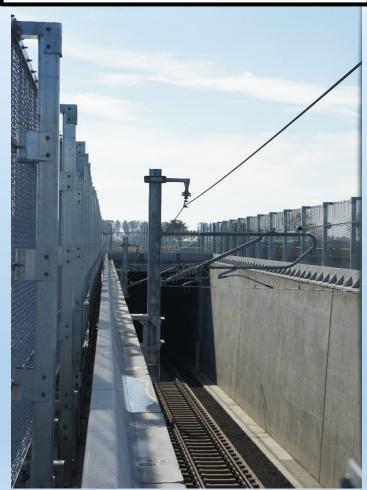
Pluvial flooding

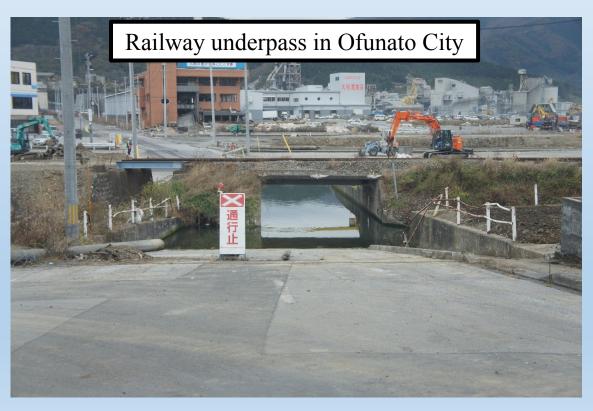
27.8.2011 Osaka, Japan

77.5 mm/hr.

22.5mm/10min.

出典: You Tube


Tsunami flooding


11.3.2011 Tohoku

Tsunami flooding

Railway tunnel near Sendai Airport

Storm surge flooding

Hurricane Sandy (29,10,2012)

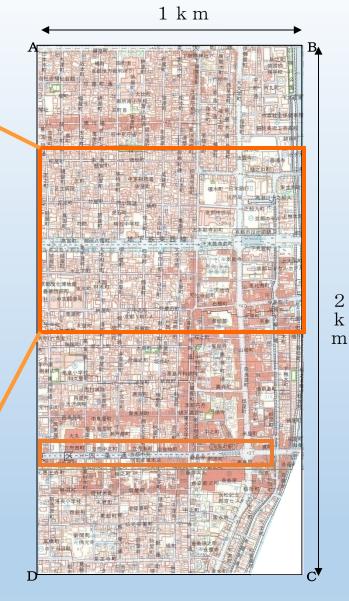
Strom surge disasters

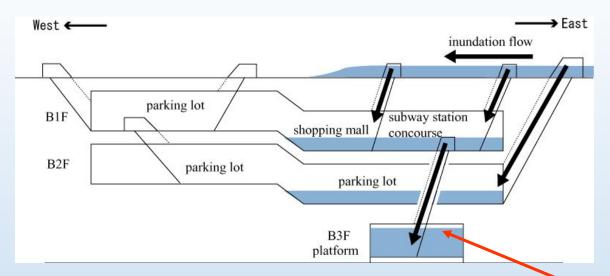
	Tokyo	Nagoya	Osaka
Typhoon	30.9.1917	26.9.1959	21.9.1934
Death	1127	4697	2702
Missing	177	401	334
Injured	2022	38921	14994

Contents

Underground Space Inundation

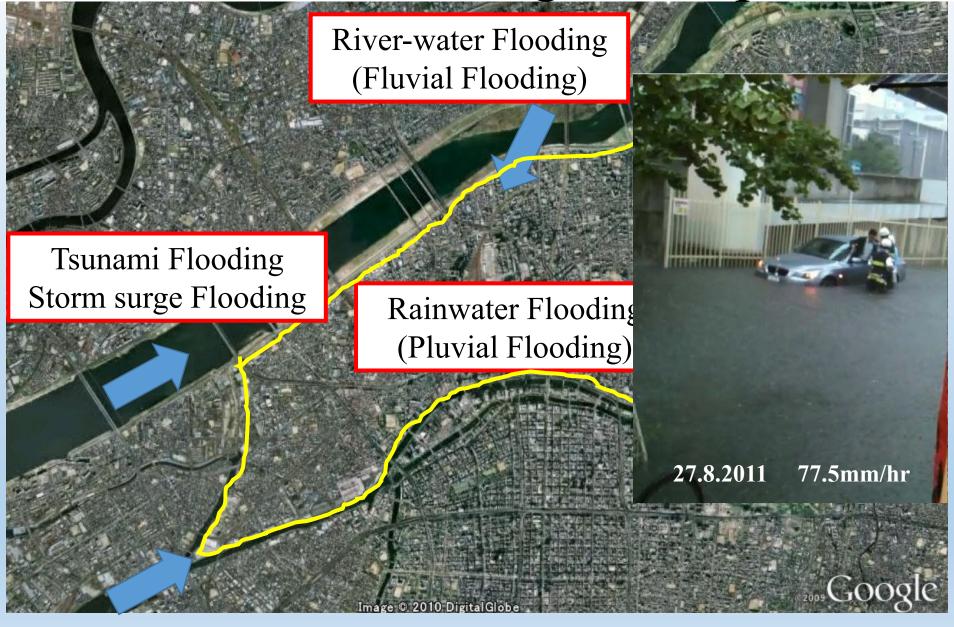
- ➤ What happened?
- ➤ What will happen?

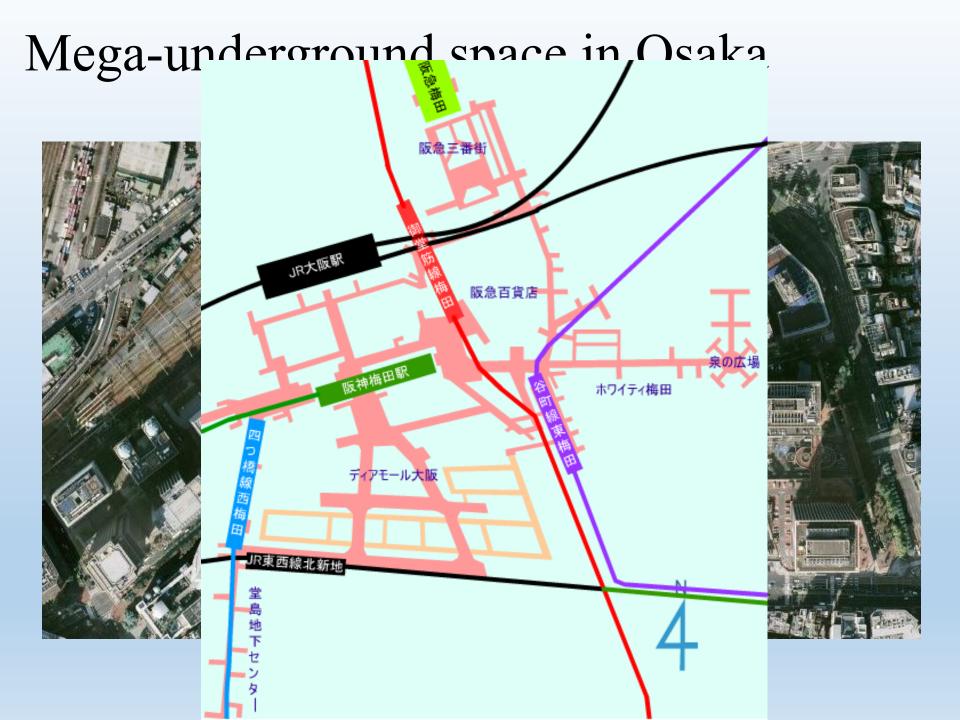

Evacuation from Underground Space

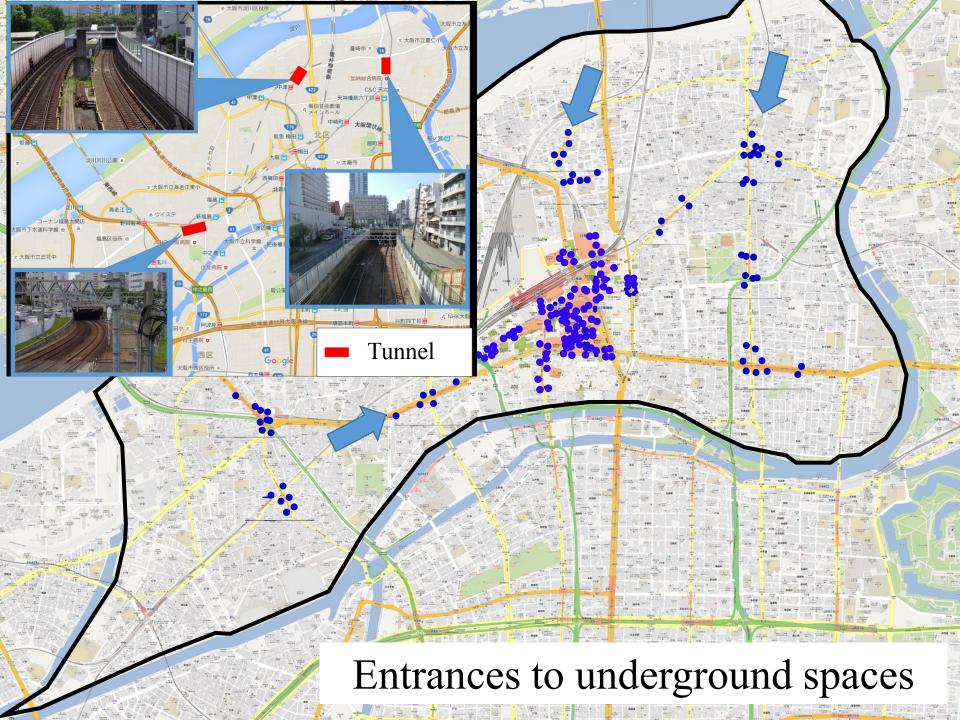

- >Static flooding (hydrostatic pressure)
- ➤ Dynamic flooding (hydrostatic and hydrodynamic force)

Location

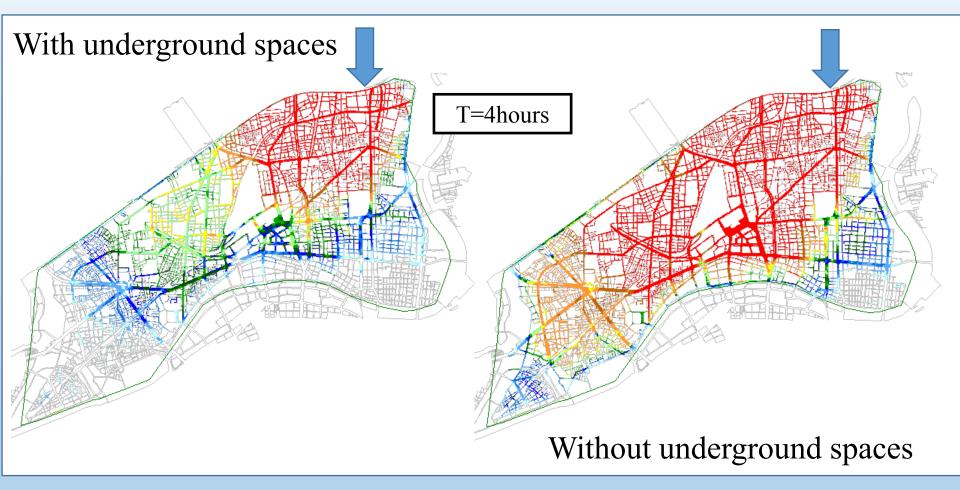
- Under Oike St. in the center area of Kyoto
- Longitudinal distance: 650m, Width: 40m
- The east end is close to The Kamo River

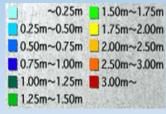

Prototype


Model(s=1/30)

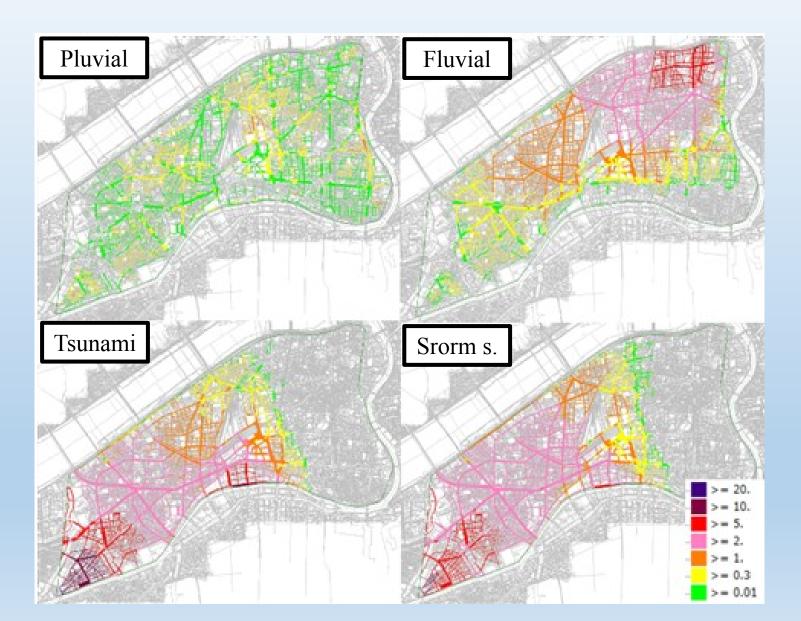

Japanese Underground Space

Hazards for underground space



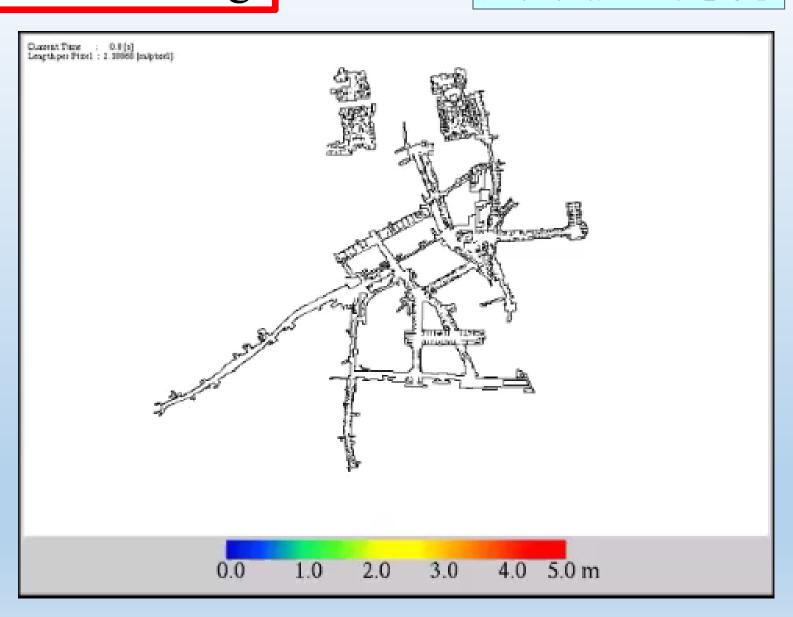


Extreme flood conditions

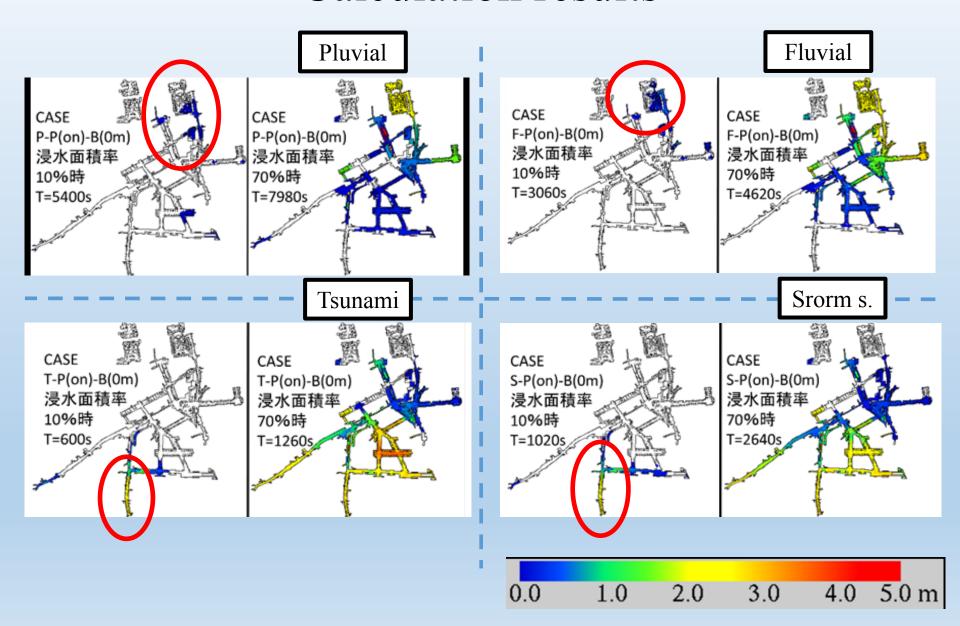

Flooding	Extreme flood condition	Inflow condition of calculation
Pluvial	Rainfall in Okazaki, Japan Date: 29.8.2008 Total: 242mm/3hr Max. per 1hr: 146.5 mm (2.5 times of design rainfall, 60mm)	Rainfall intensity per 10 min. T=3 hr Qtotal=2.97x10 ⁶ m ³
Fluvial	Two times of the design runoff discharge Date: 25.9.1953 Total: 500mm/2days(=2 times data) (released by Japanese government)	Overflow discharge $T=10.9 \text{ hr}$ $Q_{total}=9.32 \times 10^7 \text{ m}^3$
Storm surge	Super typhoon model Magnitude: 900 hPa (released by Japanese government)	$\underbrace{\mathbb{E}}_{1,0 \\ 0,0 \\ 0,0 \\ 1,0 \\ 0,0 \\ 1,0$
Tsunami	Tsunami caused by the Nankai Trough Great Earthquake Magnitude: 9.0 (released by Japanese government)	Overflow depth T=0.37 hr Qtotal=5.83x10 ⁶ m ³

Fluvial flooding

Calculation results

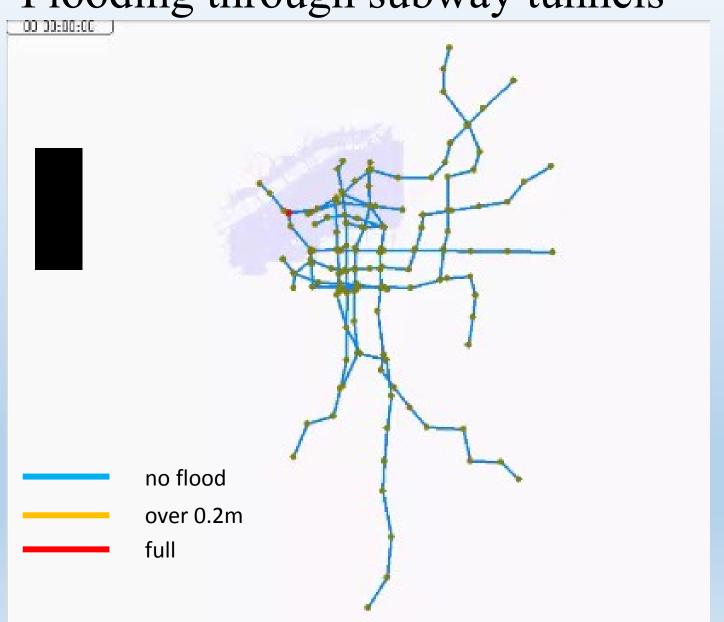


Inflow discharge into underground spaces without counter measures


Extreme flood	Duration (hr)	Flood volume (x10 ⁴ m ³)	Inflow discharge (x10 ⁴ m ³)	Inflow rate (%)
Pluvial flood (146.5mm/hr)	3.0	297	37(21)	13(7)
Fluvial flood (Q _p =4000 m ³ /s)	10.9	9300	6760(2880)	73(31)
Tsunami flood (M=9.0)	0.35	583	292(117)	50(20)
Storm surge (super typhoon)	1.5	960	538(211)	56(22)

Pluvial flooding

通路・店舗・地下駅を考慮


Calculation results

Fluvial flooding

Flooding through subway tunnels

Contents

Underground Space Inundation

- ➤ What happened?
- ➤ What will happen?

Evacuation from Underground Space

- >Static flooding (hydrostatic pressure)
- ➤ Dynamic flooding (hydrostatic and hydrodynamic force)

Floods

≻Causes

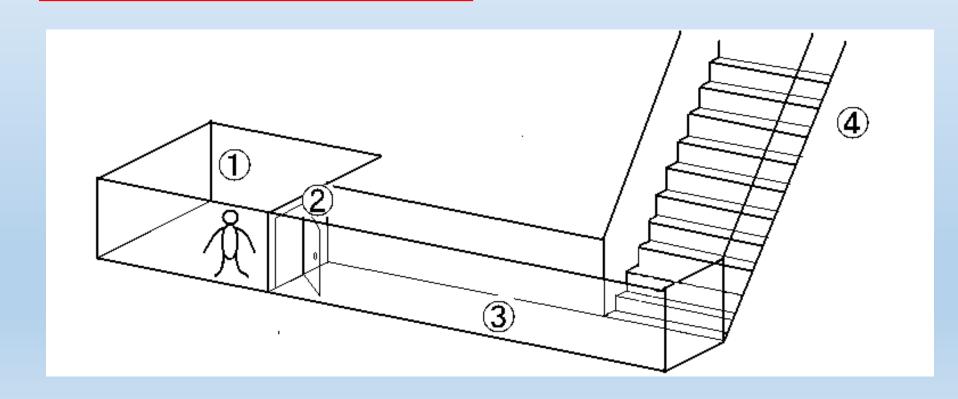
- Typhoon or Heavy Rainfall > Pluvial or Fluvial floods
- Typhoon > Storm surge, Earthquake > Tsunami

> Type of flood

- Static flooding :U<1m/s, hydrostatic pressure
- Dynamic flooding: U>1m/s, hydrostatic & hydrodynamic force
- River bank erosion: flow velocity or loss of stability
- Rise of ground water: hydrostatic pressure

➤ Impact parameters of flood

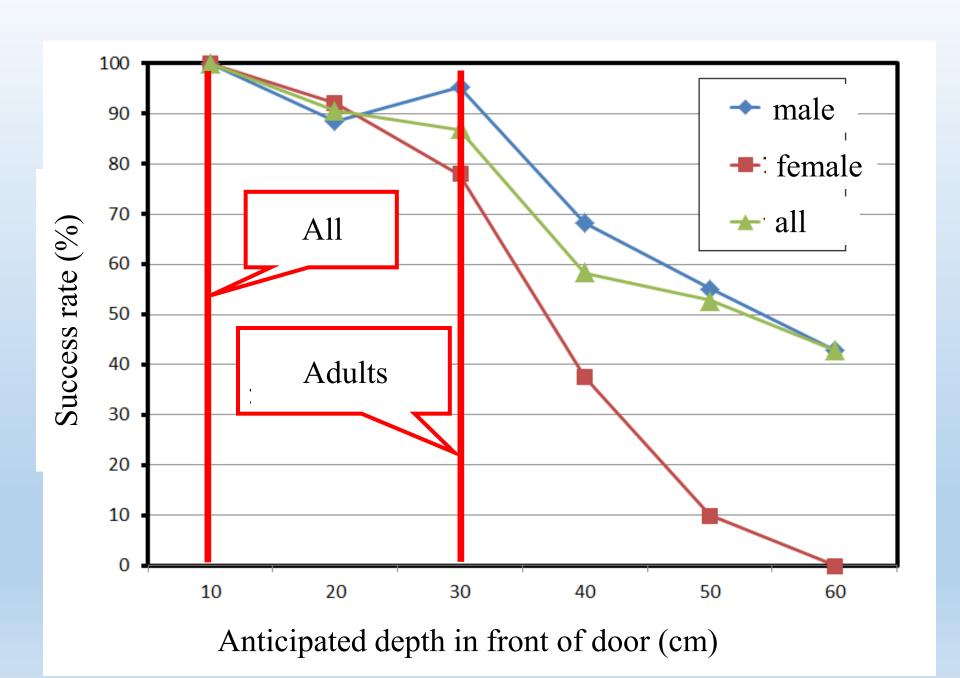
- Flood depth 0.5m, 2m
- Duration of flood: some hours, several days, weeks
- Flow velocity: 1m/s, 2m/s, 3-5m/s
- Velocity of water rise:


(after Non Structural Flood Plain Management, ICPR)

Evacuation from Underground

- 1 Notice flood
- 2Open the door

- 3Walk the corridor
- 4 Climb the stairs


Mobile door equipment

Male: 561 persons

Female: 298

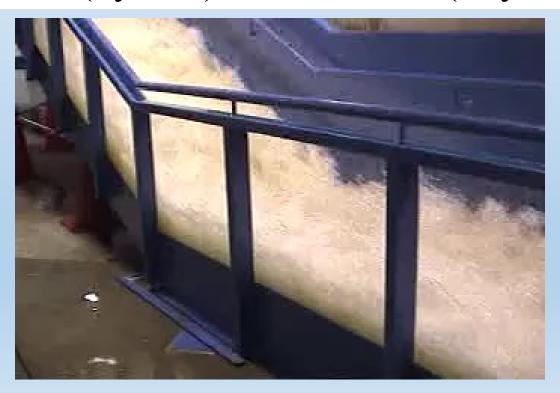
Total : 859

Contents

Underground Space Inundation

- ➤ What happened?
- ➤ What will happen?

Evacuation from Underground Space

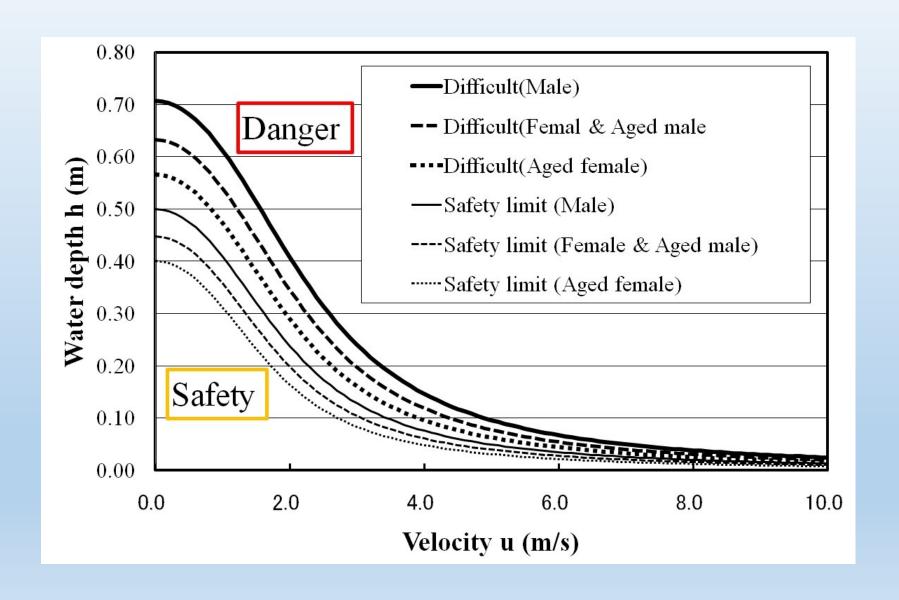

- >Static flooding (hydrostatic pressure)
- Dynamic flooding (hydrostatic and hydrodynamic force)

Evacuation tests cooperated with Kyoto Univ.

Examinees: 314

47 females (30.2 years), 157 males (25.8 years)

11 children (8 years), 3 children (12 years)



Criteria for safe evacuation

Specific force per unit width: u²h/g+h²/2

	Safety limit	Difficult
Male	0. 125	0. 250
Elderly male	0. 100	0. 200
Female	0. 100	0. 200
Elderly female	0. 080	0. 160

Criteria for safe evacuation

H=50cm U²h/g+h²/2>0.250 If it's over the Limit value!

Underground space is useful?

地震で電車が止まり、改札口のコンコースで運転の再開を待つ 人たち(11日午後5時6分、京王線新宿駅で)=吉岡毅撮影

Questions

- ➤ What is problem to be solved? We have already pointed out.
- ➤ How to make underground space management?

We have to prepare an appropriate plan for underground space management.

It is good to have a shelter against every storm.

Thank you for your attention

