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Abstract: Due to limited pumping capacity, anticipation of extreme rainfall events is necessary for the water level control of lowland drainage systems in the west of the Netherlands. A control system, based on Model Predictive Control is able to ensure timely anticipation by optimizing the pump flows over a certain time horizon, fed by predictions of the inflow, based on forecasted and measured rainfall. Uncertainties in these forecasts negatively influence the performance of the controlled water system. In this paper, the reduction in uncertainty by the information in the forecasts and the value of this information for the control of the water levels is investigated. An empirical analysis shows that uncertainties significantly affect the controller and much can be gained by improving forecasts. Furthermore it is shown that even with perfect forecasts, looking ahead for more than 8 hours is not necessary for improving control.
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1. introduction

In the western lowlands of the Netherlands, drainage is mainly dependent on pumping stations. The evacuation of drainage water usually takes place in two stages. Water is first pumped from low-lying areas (polders) to the storage canal system, a system of interconnected canals and lakes. This storage canal system connects the pumping stations of different polders to large pumping stations at the coast or large rivers, where the second pumping stage takes place. The storage canals serve both for transport and for storage of drainage water. The water level is usually higher than surface level in most of surrounding polders, but lower than the water level in surrounding outer waters (sea and rivers). The water level in the storage canal system needs to be kept close to a certain long term optimal target level and within strict margins.

Delfland is the water board responsible for the south-western part of the province of South Holland. With 1.4 million inhabitants on 410 km2, it is the most densely populated water board of the Netherlands. The area has a high concentration of economical activity, making it vulnerable to inundation related problems. Apart from increasing vulnerability, density of human activities also increases probability of inundation due to extreme rainfall. Especially in the western part of Delfland, greenhouses with impermeable rooftops cover a large area, resulting in a very fast runoff process. 

Total capacity of the main pumping stations is limited and dependent on tide. Although pumping stations at polder level have a limited joint capacity that is smaller than that of the main pumps, the water level in the storage canals can rise fast because of uncontrolled inflow from higher lying areas. Increases in area covered by greenhouses and the occurrence of several extreme events have led to considerable problems over the last decade. 

The water board is currently executing a large program of structural measures to increase storage and discharge capacity in the system. Apart from these structural measures, a new decision support system is being tested to improve operational management. The characteristics of the water system make it necessary to anticipate extreme rainfall events by pumping out water from the canal system beforehand. In this way temporary extra storage in the canal system is created. Optimal anticipatory actions are calculated by the decision support system, based on Model Predictive Control, described in section 2. 

Anticipation requires information about the future, which will contain uncertainties that negatively influence optimality of control. These uncertainties can be reduced by using information. Information Theory provides a useful framework for measuring information content and uncertainties. The relevant information-theoretical concepts in the context of this control problem are introduced in section 3 and used to analyze how informative the rainfall forecasts are about future rainfall events.

When optimizing control decisions based on predicted future inputs to the system, a certain time-horizon needs to be considered, over which the optimization takes place. To determine how long this horizon needs to be, both time-dependency of prediction uncertainties and of controlled system characteristics play a role. In section 4, two characteristic time horizons to analyze these time-dependencies are presented.

Finally, in section 5, sensitivity of the controller for rainfall predictions and uncertainties is tested empirically as a function of time. This is done by simulating the controller in a simplified setup. It can be concluded that the benefit of anticipating almost completely vanishes due to the forecast uncertainties, but never becomes negative. Furthermore it is concluded that, even for a perfect forecast, extending the optimization horizon beyond 8 hours will not improve performance. 

2. control system and measured data 

The water board has installed an automated control / decision support system for operating the main pumping stations. The system is based on a Model Predictive Control algorithm (MPC) (Camacho and Bordons, 1999; Overloop, 2006), using a prediction of inflow to the storage canal system over the next 24 hours to decide on the optimal pumping schedule. 

In the optimization, an objective function (Equation 1) is minimized over 24 hours into the future (the optimization horizon). The objective function penalizes deviation from target level by using the sum of squared water level deviations in time. Apart from this, it also contains a smaller term that penalizes control actions by pumping stations to minimize operating costs and to avoid high flows causing steep gradients.
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In which i is the timestep, n is the number of timesteps to the optimization horizon, e is the deviation from target level, Qe is the penalty for this deviation, Qc is the pump flow and RQ is the penalty on this flow.  
Apart from this objective function, the optimization problem also contains constraints on maximum and minimum flow of the main pumping stations and all relations between the variables in time, contained in the internal model. By solving this optimization, the MPC controller finds an optimal sequence of control actions, minimizing the penalty function and satisfying the constraints, by anticipating in case maximum pump flow is expected to be exceeded by the inflow. 

The optimization is repeated every 15 minutes, based on actualized information. The relevant information for the optimization consists of actual water level in the canal system, and actual and expected inflow to the system. This inflow in its turn depends on past and future rainfall and moisture states of polders and other surrounding land.
The problem however, is that this input information contains considerable uncertainties. This can lead to problems in controlling the water levels. Not only unpredicted storms have negative effects (flooding), but also false alarms or overestimated storms, leading to suboptimal low water levels (instability of embankments, problems for navigation) and unnecessary costs for emergency pumping. 

In this case study, the influence of prediction uncertainties on the Model Predictive Controller for the water system of Delfland is analyzed in an information theoretic perspective. In the analysis we use a time-series of over 2.5 years of hourly, 24 hour horizon rainfall predictions and recorded rainfall from the rain gauges in the area. 

Apart from this rainfall data, we use data recorded by the control system since it was put into use. Because inflow to the canal system can not be measured directly, it was estimated by taking the water balance over the storage canal system, modeled as a single reservoir. By using the known outflows of the main pumping stations and the changes in weighted average water level over the system, based on 8 measuring points, the apparent inflow was derived. This resulted in a noisy inflow signal, which was subsequently used to estimate a simple model for the rainfall-runoff process.

Using this rainfall-runoff model, the storage canal system model, and the simulated MPC control system, we demonstrate the impact that uncertainties in the weather prediction have on real time flood control of this system. First we analyze the uncertainty in rainfall forecasts from an information-theoretic point of view.
3. Information content and relevant information

In Information Theory, uncertainty, missing information and entropy of a probability distribution are equivalent properties. This measure uniquely follows from a very limited number of assumptions and has proven useful in many fields of science (Cover and Thomas, 2006; Jaynes, 1957). The entropy H (Equation 2) is defined as:
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In which X is the support set of the random variable and p(x) is the probability of a certain outcome x. When using a base 2 logarithm, the resulting entropy is in the unit bits. 

In the same way that entropy measures uncertainty of a random variable, mutual information (Equation 3) measures the average reduction of uncertainty in one variable, by knowing the value of a related variable. It is the amount of information that one variable contains about another. In case one variable is the forecast and the other the true measured rainfall in hindsight, the mutual information I thus measures how informative the forecasts are about the true future rainfall.
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When comparing the hourly forecasts from the Delfland dataset with the true measured rainfall, different choices can be made about the period over which the sums are taken and the lead-time for which to compare the forecasts. Also, there are two different methods to compare: ‘horizontal” and “vertical” methods, which are illustrated in Figure 1.
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Figure 1: The various options to compare forecasts and measured rainfall. M3 is the measured rainfall over a 3 hour period, while F3-L1v, F3-L8v and F3-L6h are the forecasts for lead times of 1, 8 and 6 hours respectively. The first two use the vertical method, while the last uses the horizontal.
What comparison is relevant depends on the sensitivity of the control decision for those different characteristics of the forecast. For a slow reacting water system for example, it makes sense to compare multi-hour sums instead of single hours. An example of how the forecast informativity depends on lead time for the vertical method is given for the 3 hour sum (see Figure 2).

[image: image5.emf]0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

lead time (hours)

mutual information (bits)


Figure 2: Dependency on lead time of mutual information between 3 hour sums of forecasts and measured rainfall. 1% significance value is indicated by dashed line.
The question is now what quantities in the forecast are relevant for the decision. For some water systems, the decision will be sensitive to the hourly rainfall, while for others, the 6 hour sum will be more relevant.  The value of the information that the forecasts add to the decision making or control problem, depends on the characteristics of the controlled system, objective function and the constraints. The decision needs to be sensitive to forecasted variable and better knowledge of its probability distribution needs to have direct value.

A theoretical problem in which the information content is equivalent to the relevant information content or value of information for the problem is the horse race with side information, a classical example from information theory (see Cover and Thomas, 2006). If a bookmaker offers fair odds with respect to the true distribution of probabilities of winning over the horses, a gambler can use side information (e.g. the weather) to let his wealth grow exponentially. If the gambler uses the optimal (proportional) betting strategy, the average doubling rate of his money will be the mutual information between the side information variable and the outcome of the horse race.    

However, the storage canal control problem differs from the ideal horse race in two important aspects: 

· The knowledge of the probability of future events cannot be fully exploited in the decision, because only one control action can be taken. It is impossible to spread stakes optimally over several actions. 
· The odds are not fair, but determined by the damage function. The losses of events are not related to their probability of occurring, as would the case for fair odds.
Therefore, apart from the information contained in the forecast, the value of this information for the decision needs to be determined. Furthermore, because the storage canal control problem is a sequential decision problem, in which decisions are constantly followed by new decisions, based on updated information, some time aspects of the information flows need to be considered.   

4. time dependency of information and relevant information

When making probabilistic forecasts about future rainfall, knowledge of the actual state and behavior of atmospheric system is used. Due to the nature of the dynamics of this system, uncertainties increase with lead time. However, this increase in uncertainty is bounded and the forecast distribution asymptotically approaches the climatic distribution. (DelSole and Tippett, 2007; Weijs, et al., 2007). The lead time at which the difference between forecast and climatic distribution becomes insignificant, we define as the Information Prediction Horizon (Weijs, et al., 2007).  Beyond this horizon, current information does not have any predictive power. Mutual information between forecast and the true events will not significantly differ from zero. This horizon is dependent on the characteristics of the forecasting system. From Figure 2 it can be seen that the Information Prediction Horizon for these forecasts is shorter than 20 hours.
On the other hand, not all information about the future, determined by the predictability, is relevant to the decision problem. Because in sequential decision processes, current control decisions can be partly corrected by future decisions, the relevance of information for the current decision that has to be made also fades with increasing lead-time. In a similar way as the Information Prediction Horizon, we can also define an Information Control Horizon (Weijs, et al., 2007), as the lead time at which future events become irrelevant to the current decision. As this horizon depends on the true events and not on the forecast, it is independent of the forecasting system, but depends on the characteristics of the controlled system, constraints and objective function. 

These horizons may be derived analytically for some systems and can serve as guidelines for designing a MPC controller with an appropriate optimization horizon (Weijs, et al., 2007). 

The Information Control Horizon may also depend on the characteristics of the inputs. In this case, it depends on how long and how much inflow exceeds maximum outflow. In the next section, we show the existence of the time horizons empirically, by simulating the controlled system, forced by measured input data over a 2.5 year period.
5. Empirical value of information for control

To determine to which extent the controlled system is sensitive to rainfall forecast information, several simulations were made. Because this study concerns the influence of information and uncertainties in rainfall forecasts, uncertainties in water level and rainfall measurements were not considered and the models for the rainfall-runoff process and the storage canal system are assumed to be perfect. In the simulations, both storage canal system and MPC controller are simulated. For the MPC-controller, different horizons were used for the optimization and the resulting performance in controlling the water levels is compared. The simulations are done using a one hour time step. To be able to compare results with optimal feedback control, the penalty on control actions was set to zero. This leads to small differences in behavior compared to the real controller, but does not affect the results on time horizons. 
First, to determine the Information Control Horizon, simulations were made in which the predictions that the MPC controller uses are taken from measured rainfall data, that is also used to simulate the storage canal system. This corresponds to perfect foresight, which allows the controller to optimally anticipate extreme events. This is only true in case the optimization horizon is larger than the Information Control Horizon. If it is shorter, the controller does not see events in time to take the necessary anticipatory actions. In other words, the Information Control Horizon is the point where extending the optimization horizon does not improve performance anymore. As can be seen from the dashed line in Figure 3, for the Delfland storage canals, the Information Control Horizon is approximately8 hours.  
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Figure 3: Resulting performance as function of optimization horizon for simulation with perfect foresight (dashed) and simulation using forecasts that were actually available (solid).
The results for a optimization horizon of 1 hour correspond to feed forward control. This means the controller does not anticipate future inflows, but exactly knows the current inflow. This already assumes perfect rainfall measurements and knowledge of the rainfall-runoff process. Feed forward control is an improvement compared to feedback control, where control actions are based on measured water levels in the system, which leads to actions that always lag behind. As long as the inflow does not exceed the outflow, a feed forward controller can perfectly maintain the water level at target level, but when the outflow is exceeded, water levels start to deviate. 

From the performance, which is proportional to resulting water level squared deviations, it can be seen that anticipation based on perfect forecasts would improve water level control by a factor of about 3 compared to feed forward control, while feed forward control already outperforms an optimally tuned (linear-quadratic regulator) feedback controller (not shown) by a factor 4.5. 
Secondly, simulations were done in which the controlled system was fed with the measured rainfall, while the controller was fed with the forecasts that were actually available at the time, instead of perfect forecasts. From the results of these second simulations, it becomes clear that the uncertainties in the forecasts actually reduce most of the value of anticipating. This also shows the huge gain that can be made by improving forecasts, especially for the first 8 hours. For these simulations, the performance as function of lead time is shown as the solid line in Figure 3.
6. Conclusions

Analysis of mutual information between forecasted and measured rainfall has shown that rainfall forecasts have significant predictive power for lead times up to at least 20 hours. The Information Prediction Horizon for this method of forecasting rainfall is more than 20 hours. 

Analysis of controller performance under perfect foresight as a function of optimization horizon shows that the current control action is only sensitive to events within the first 8 hours. Therefore, extending the optimization horizon beyond 8 hours does not improve control performance. This defines the Information control horizon.  

However, the value of the predictive power in the forecasts for controlling the water levels disappears already at lead-times of 5 hours. Although predictive power is there and the controller is sensitive to events between 5 and 7 hours ahead, no gain is made using these forecasts. A probable cause for this is that performance is mainly dependent on a limited number of events for the cases in which anticipation is necessary or appears to be necessary. Even if forecasts have significant predictive power over the whole range of events, they might not have this power for correctly forecasting extreme events that need to be anticipated more than 5 hours beforehand.

Another conclusion from simulations with real forecasts is that the value of anticipating largely vanishes as a result of forecast inaccuracies. Comparison between performance with perfect and with real forecasts shows a potential gain in performance by a factor 3 that could be made by improving forecasts.  

Even without anticipation, simulated feed forward control using perfect knowledge of the current inflow showed performance to be improved by a factor 4.5 compared to optimal feedback control, which only uses measured water levels as inputs. This shows the importance of good rainfall measurements, accurate rainfall-runoff models and real time availability of measured flows from the polder pumping stations.
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