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Abstract: Required model input data are not always completely available and model structures are only a crude description of the underlying natural processes, therefore model parameters need to be calibrated. Calibrated model parameters only reflect a small domain of the natural processes well. This imposes an obstacle on the accuracy of modelling a wide range of flood events, which, in turn is crucial for flood forecasting systems. This is also one of the reasons why model results are uncertain. Together with the rigid model structures of currently available rainfall-runoff models this presents a serious constraint to portraying the highly non-linear transformation of precipitation into runoff and producing a reliable flood forecast. Different model concepts (interflow, direct runoff), or rather the represented processes, such as infiltration, soil water movement etc. are more or less dominating different sections of the runoff spectrum. Most models do not account for such transient characteristics inherent to the hydrograph. This falls together with uncertain input data (e.g. rainfall intensity on different scales and the rainfalls´ spatial distribution, especially if rainfall is a predicted parameter). In this paper we try to show a way towards a possible online Monte Carlo evaluation of model uncertainty and the graphical means to communicate the uncertain forecast in a probabilistic but yet comprehensible way. This is based on the development of a new flood forecasting system which is used for online Monte-Carlo evaluation of the forecast uncertainty, considering input data and model structure of rainfall-runoff modelling for flood forecasting. The Monte-Carlo results are evaluated in an operationally applicable model and the uncertainty is colour-coded in newly developed uncertainty plots of the forecast which are updated each time step. This gives operators in flood warning centres a much more reliable and easy to interpret information about the probability of the forecast well in advance of the occurrence.   
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1. Introduction
Warnings are likely to become an increasingly important tool for risk management as reliance on them allows more otherwise risky behaviour (Handmer, 2002). Notwithstanding this perception, and despite the awareness that hydrological forecasts are extremely uncertain, especially if they are based on rainfall forecasts, flood warnings are often threshold based approaches. 
Consequently, the number of false alarms or missed alarms is still at a level that makes people doubt about the reliability of modern flood forecasting and flood warning. This mistrust is a major factor for the accumulated damage in case of an extreme event and does impact on the preparedness of the population living in flood prone areas. Accordingly, the development of flood maps based on return periods suggests a level of security to people living or investing in areas just above a threshold. Most people are not used to interpret the statistical meaning of return periods. This might lead to bad management in case of an occurring extreme event and potentially increases the damage to goods and human lives. However, in some countries, the public does already accept probabilistic weather forecasts, especially if rainfall is considered. A fine example is BoM (2008). This approach could also help enabling people to cope with the risk of getting flooded and interpret probability based flood warnings. 
Probability based warnings are based on an uncertainty evaluation of the forecast. This uncertainty includes the vague precipitation forecast, as well as the deficiencies of the hydrological model transferring this forecast into discharge, water levels and inundated areas. Recognizing this, researchers invested a lot of effort in accounting for the uncertainty in hydrological modelling in recent years (Beven, 1993; Butts et al., 2004; Bronstert and Bardossy, 2003; Benke et al., 2007; Gabellani et al., 2007; Demeritt et al., 2007; Krzysztofowicz and Herr, 2001; Krzysztofowicz, 2001). Ensemble techniques are a common means for enhancing the forecast reliability as described by Shamseldin et al. (1997, 2007), Abrahart and See (2002), Duan et al. (2007) -amongst others. They propose a variety of methods to integrate the predictions of different models. This leads to a better mean validation performance of models, depending on the model averaging.  A valuable share of information arises from the results of the Distributed Model Intercomparsion Project (DIMP). Reed et al. (2004) present parts of the study that allow for concluding that model means could be used in operational circumstances. Georgakakos et al. (2004) show that model ensemble means perform better than single models with optimal parameter sets. Whenever operational purposes are the motivation of modelling, extremes and variances are of primarily concern rather than means. A better portraying of extremes can be achieved as proposed by Fenicia et al. (2007). They use a combination of HBV model calibrations that represent high and low flow classes. Their weighted model output significantly improves the model performance. 
The methodology we are presenting in this paper opens the possibility to evaluate a large number of Monte Carlo model runs with the flood forecasting system described in Cullmann (2006 and 2007) and Peters (2007). The model developed in these publications is based on portraying a distributed rainfall runoff model with multiple parameter sets by means of ANN trained with a comprehensive synthetic data base. This makes the operational model extremely fast, keeping it free from discontinuities in internal state variables even for the case of parameter updating.  

2. MODEL
Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) is a method offering a way for the aforementioned communication of probabilistic flood warnings. For preparing a flood forecast, PAI-OFF includes the catchment’s specific hydrological and meteorological characteristics, considers flood relevant features of the hydrometeorological pre-event conditions and, last not least, the predicted intensity and distribution of the rainfall. ANN are highly complex entities that are able to approximate non-linear functional relationships with arbitrary accuracy. Considering their application in hydrology, it is inevitable to keep in mind that ANN are data driven models. In general, ANN have a limited ability of extrapolation which means that only events and characteristics “known” can be portrayed by the neural network.

Therefore, in a preparatory step of PAI-OFF all potential flood-relevant weather scenarios are identified by a catchment specific meteorological analysis. Those weather scenarios constitute a fraction of the input for the physically based hydrologic/hydraulic model. Another essential part of the network’s input is formed by all possible hydrological states of the catchment encoded in specific feature vectors. The combination of both the local possible and meaningful weather scenarios and the feature vectors represent the totality of all input scenarios. The catchment’s reaction under the input scenarios is evaluated using physically based hydrological/hydraulic modelling. We used WaSiM-ETH (Schulla, 2007) for catchment modelling and HEC-RAS for estimating the propagation of the flood wave in order to be able to account for possible backwater effects. Hydrographs derived from the hydrological/hydraulic modelling serve as output-vectors in the training data set of the ANN.
With additional information resulting from the catchment specific analysis, a database which describes the catchment’s reaction and all flood relevant rainfall events under all possible conditions is established. A specific training strategy based on a stepwise serial regression transfers the catchment’s hydrologic/hydraulic properties together with all flood relevant characteristics of the pre-event history to the neural network. We use an polynomial network (PoNN) for portraying the rainfall-runoff processes in the upper catchment (Cullmann, 2006) and a multi-layer feed-forward network (MLFN) for describing the flood wave propagation (Peters, 2007). The aforementioned steps of the preparatory phase of PAI-OFF have to be only performed once. The resulting highly efficient model is then available for a fast operational evaluation of the forecast uncertainty.
3. CASE STUDY & DISCUSSION
The study in this paper is aimed at evaluating the possibilities of communicating a flood warning. We therefore concentrate on the discussing the output of the forecast rather than going into detail about error criteria and model accuracy. The test is carried out in the Freiberger Mulde Catchment (located in Eastern Germany's Ore Mountains (see Figure 1). The catchment area is 2983 km², altitudes range from 140 to 1200 msL. Land use is characterized by 30 percent of forested area and about 50 percent being farmed.
The study tries to show the applicability of the PAI-OFF forecasting tool for processing and communicating ensemble rainfall forecasts exemplarily for uncertain initial hydrological conditions emerging from a fuzzy knowledge of the temporal and spatial distribution of aerial precipitation recorded in anticipation of the test event. It focuses on illustrating the performance and possibilities of neural network techniques for online flood forecasting and does not claim to deliver realistic analyses of a flood event.
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Figure 1 Topographic map of the Freiberger Mulde catchment with marked gauging sites at Kriebstein and Erlln.

The study is based on synthetically derived rainstorms for the August 2002 event since we lack a rainfall forecast with a substantial number of ensemble members. The ensemble used in this study consists of 200 scenarios for the rainfall distribution of the measured rainfall which lead to the 2002 flood event. The rainfall used in the study is not altered in volume, merely the temporal distribution is altered randomly with the help of a distribution function which ranges from a uniform to a Gauss distribution, various skews have been randomly selected for distributing the rainfall fields. This ensemble is combined with 43 years of recorded data, corresponding to 43 different initial conditions regarding pre-event conditions. All in all this leads to 5226 randomly selected realisations of the forecast which are then evaluated for communicating a flood warning. 
To give an impression about the reliability of the system we first concentrate on the general reliability of PAI-OFF for a reanalysis of the August 2002 event at Kriebstein gauging station considering different initialisation dates for a 48h flood forecast and a measured data set for the next 72 hours (see Figure 2). Data for the expected spatial and temporal distribution of rainfall after initialisation is obtained from downscaled historical rain gauge data for August 2002. The modelled flood event was not included in data sets for neural network training.
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Figure 2 Comparison between flood prognoses for Kriebstein gauging site for advancing initialisation dates, flood event August 2002.

Figure 2 reveals that the reanalysis is independently good considering different initialisation dates. The Flood peak is portrayed well regarding to flood peak and timing. Lead-times of 48 hours and smaller yield a convenient prognosis, keeping in mind the exceptional magnitude of the flood wave considering the catchment area of about 1750 km².
The next step is the evaluation of the ensemble. Generally we could use a simple Box-Whisker plot (figure 3) to communicate an uncertain flood warning. In the figure, the 200 rainfall scenarios are evaluated. This makes sense and is relatively easy to interpret. However, if we consider the full ensemble shown in figure 4 we realize that the ensemble mean is much to low. The model tends under-predict the flood event in the test case set up for the full ensemble. This would still be easily read from a Box-Whisker plot and is either due to unique preconditions in 2002 or to the model being unable to portray the flood regarding the preconditions used in the ensemble, which, on top, could also contain bad assumptions. If we closely examine figure 4 we realize that various more densely populated areas exist in the space of realizations. For one, we observe the lower space near to the ensemble mean is densely populated by ensemble realizations.   
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Figure 3 Schematic view of Box-Whisker plot for August 2002 flood ensemble with 200 different rainfall scenarios.
A second population concentrates near the time series for the model output with measured data and a third, more scarcely dense population lies in between the two mentioned areas. Would we code this in box whisker plots we would not see this fact at a first glance.
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Figure 4 Full ensemble of 5226 members for different lead times. 
Figure 5 shows another, much more comprehensive way of depicting the ensemble for a flood warning. In this figure, the flow is classified and the realizations are counted for the flow classes. The more counts in a certain class, the more red is the plot in figure 5. Classes with are scarcely populated by ensemble members are depicted in blue. From this figure the three clusters of ensemble members become clear at first sight. This way it helps the interpreter to capture that either there is a bias in the ensemble or the model has distinct deficiencies according to certain preconditions. In figure 5 relative frequency is used for coding. It is also possible to use absolute frequency. This way of designing a flood warning is much more comprehensive and easier to interpret intuitively. It does not make the forecast more or less reliable, but it might help to communicate uncertain forecasts easier.  
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Figure 5 Ensemble reduced to 5226 members for different lead times.
4. conclusions 
In this paper, we exemplarily applied the ANN-based flood forecasting methodology PAI-OFF to a large ensemble. With the highly efficient computational design of PAI-OFF, the incorporation of different predicted realisations of future meteorological events becomes possible near real-time. PAI-OFF allows for combining rigorous physically based catchment modelling with the probabilistic evaluation of ensembles. It opens a way for considering uncertain initial hydrological conditions and other sources of the hydrological forecast uncertainty, e.g. resulting from uncertain soil-hydraulic data. Colour coding the frequency of ensemble members in flow classes allows for an easy asset of the model reliability and ensemble bias respectively. The way of communicating the forecast does not make the result any more reliable. On the other hand, this approach could be useful for communication with the public or political stakeholders because it is easy to capture the message of colour coded flood warning plots, even for people without special training.  
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