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Abstract: This paper develops an original method to study rainfall intensity duration frequency (IDF) under changing climatic conditions. A non-parametric K-Nearest Neighbour weather generator algorithm operating on a daily time step is used to synthetically create long time series of weather data. The weather generator algorithm is developed to accept data collected by the Meteorological Service of Canada (MSC) for use in IDF analysis, including eight for-the-day-maximums of 5, 10, 15, 30 minutes, 1, 2, 6 and 12 hour, along with daily rainfall time series. The weather generator uses sophisticated shuffling mechanisms to produce synthetic data similar to the observed record. Furthermore, the weather generator also uses a perturbation mechanism that pushes the simulated data outside of their historic bounds, thereby generating sequences of extreme rainfall that are likely, but not yet been observed. The methodology is applied to the southwestern Ontario region of Canada, with the main focus being the City of London. Two simulation scenarios are used in the analysis: (i) historic (that reshuffles and perturbs the observed data), and (ii) Global Circulation Model (GCM) B21 wet scenario (that modifies the observed record according to GCM outputs and then uses this data as weather generator input). IDF analysis of simulation results reveal that historic values are 10-20% higher than MSC values, while GCM B21 scenario produces values 30% higher than MSC, and 10-20% greater than historic simulation scenario. The simulation results indicate that rainfall magnitude will increase under climate change for all durations and return periods, therefore affecting planning, design and maintenance of municipal water management infrastructure.
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1. introduction
Considerable evidence currently exists that shows that increased greenhouse gas emissions are changing the Earth's climate. The Intergovernmental Panel on Climate Change,  the world’s most formidable body on climate science, adaptation and mitigation, states that “warming of the climate system in unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level” (IPCC, 2007). An important effect of warming of the climate system is intensification of the hydrologic cycle that leads to shifts in global and regional temperature and precipitation patterns. Changing climate conditions also alter timing and frequency of extremes events (rainfall, floods, droughts, ice storms, snow melt, etc.), and therefore have the potential to seriously affect future engineering design standards.

Design of municipal water management infrastructure (sewers, storm water management ponds or detention basins, street curbs and gutters, catch basins, swales, etc.) are typically based on the use of local extreme rainfall characteristics captured through intensity duration frequency (IDF) analysis. Such curves are developed using historically observed rainfall time series data, where annual extreme rainfall for each duration, is extracted and fitted to a theoretical probability distribution. In the use of this procedure an assumption is made that historic extremes can be used to characterize extremes of the future. In other words, the historic record is assumed to be stationary. This assumption is not valid under changing climatic conditions that bring shifts in timing, magnitude and frequency of extreme rainfall (Easterling et al., 2000)
A number of studies have looked at impacts of climate change on the practice of Canadian municipal water infrastructure management. In the study of Coulibaly and Shi (2005), Mann-Kendall trend test is performed using daily precipitation for eight stations in Ontario for the 1961-2000 time period. Seven out of eight stations considered (in two different climatological zones) have show increasing trends (although at a non-significant level). Coulibaly and Shi (2005) also formulated IDF curves for periods between 1961-1980 and 1981-2000 to identify possible shifts in heavy rainfall extremes during the past four decades. IDF curves for the 1981-2000 period for most of the stations show increases, while only the one curve identified a decrease. In addition to above trend tests, Coulibaly and Shi (2005) used statistical downscaling to convert output from the second generation Coupled Global Climate Model (CGCM2) for use in local climate change impact analysis. After calibrating and verifying their downscaling model, IDF curves were constructed for current (1961-2000) and four future time periods (2010-2039, 2040-2069, and 2070-2100) for all stations in the study area.  Significant increases were identified in IDF curves for 2040-2069 and 2070-2100 time periods, even through decreases were revealed for the 2010-2039 period (and attributed to CGCM2 simulations).

Vasiljevic (2007) assesses changes to precipitation intensities for thirteen stations in Ontario. Based on single site temporal IDF analysis, the consistency of findings indicate that heavy rainfall intensity is changing. With respect to changes in rainfall intensity over time, no uniform pattern is identified for the study area, even through more increasing than decreasing trends are detected in temporal IDF curves for both annual and seasonal analyses.

The study by Cheng et al. (2007) indicates that Ontario could more frequently experience heavy rainfall events by middle to late part of this century as a result of changes in the global climate. Increasing heavy rainfall implies that future flood risk in Ontario could significantly increase, thereby impelling revisions of current engineering infrastructure design standards. Cheng et al. (2007) also perform historic trend analyses for both rainfall and streamflow for years 1958-2002, and find that both are increasing. Seasonal rainfall totals for each of the four river basins studied have been increasing by about 20 mm per decade. Future estimates of climatic conditions are made by use of statically downscaling global circulation model outputs from global to local scales (outputs from five different models are used). In terms of rainfall, Cheng et al. (2007) projects that (i) number of days with measurable rainfall could increase by 20%, (ii) frequency of future heavy rainfall events could increase anywhere from 25-50% during this century, and (iii) seasonal rainfall totals (Apr-Nov) could increase by about 20-35%.
The rest of this paper is organized as follows: Section 2 presents a methodology used to simulate local rainfall characteristics using a modified version of a non-parametric stochastic weather generation model. Section 3 describes the case study region of London, Ontario, along with input data, scenarios tested, and simulation results. Lastly, Section 4 concludes the paper.
2. Methodology
2.1 Weather Generation Algorithm
Weather generator algorithms are stochastic simulation tools able to produce large sequences of weather data for use in integrated assessment of water resources systems. They use mathematical algorithms to generate long records of plausible data based on locally observed precipitation patterns. Weather generators are usually classified into two categories (Sharif and Burn, 2007): parametric and non-parametric. The former are stochastic tools that generate weather data by assuming a probability distribution function and a large number of parameters (often site specific) for the variable of interest. The latter do not make distribution assumptions or have site specific parameters, but rely on various shuffling and sampling algorithms. A common limitation of the parametric weather generators is that they have difficulties representing persistent events such as droughts or prolonged rainfall (Sharif and Burn, 2007). The non-parametric versions alleviate these and other drawbacks, and one of them (K Nearest Neighbour approach) is thus adopted in this study.

The K Nearest Neighbour weather generator of Sharif and Burn (2007) takes as input historical climate information for a number of weather stations in the area and generates climatic information for an arbitrary long period of time. Sophisticated algorithms are used to shuffle (and perturb) the historical data, and thus generate statistically similar climate for the region of interest. The weather generator is not used solely for the replication of historical trends; it also contains various perturbation mechanisms that force it to generate climatic information not observed in the historic record. The perturbation mechanisms are necessary as long records of historic data are often not available (particularly for shorter durations), or if available, contain a large percentage of missing values thereby masking the true extent of extremes.

The procedure in the K Nearest Neighbour weather generator starts by assembling a historic data set free of missing values for a number of stations in and around the study area. To produce weather for a new day, all days with similar characteristics are extracted from the historic record, here referred to as the potential set of neighbours. A two week moving window is typically employed, meaning that if the day of interest is January 7, days from January 1 to January 14 (from N years of record, but excluding the January 7 value for the current year) are recognized as a potential set of neighbours. Distance between regional means (average value of a weather variable from all stations for the current day) and the potential set of neighbours are computed via the Mahalanobis distance metric, and sorted from smallest to largest. Out of the sorted potential neighbour set, only the first K values are selected for further analysis (where K is a function of the number of potential neighbours), meaning that generated weather variable will be close (but not identical) to the current value for the same variable. A randomness mechanism then selects one of the K nearest values, where the closest (or the nearest) potential neighbour has the greatest chance of being selected. The value of the selected neighbour is then used as the (unperturbed) value for the day of interest. The above procedure only re-shuffles the historic data, and can be useful in studies requiring extension of historic records, but not for ones looking at changes in weather patterns. Sharif and Burn (2007) address this problem by modifying the above procedure and supplying the K Nearest Neighbour weather generator model with a perturbation mechanism.

Use of perturbation mechanisms assumes that historic data (typically of short records) does not capture extreme characteristics likely to be observed in longer records. Therefore, perturbation mechanism are used to push the observed data outside of its historic range, thus generating extremes not been previously recorded. The perturbation is needed because estimation of extreme rainfall from short data records can underestimate values used in the design of critical municipal infrastructure. Using weather generators with perturbation mechanisms can therefore produce adequate synthetic data of high spacio-temporal resolution (where resolution depends on the available data), and estimate accurate frequencies for a number of different model scenarios needed for assessment of local impacts.
The modification to the weather generator that accounts for the perturbation is achieved as follows: From the set of K nearest neighbours (selected from the largest set of potential neighbours), conditional standard deviation, σ, and bandwidth, λ is computed. The parameter σ is computed using the classical formula for standard deviation, while λ is computed via equation [1], based on the work of Sharma et al. (1997):
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In order to arrive at the perturbed value of the given weather variable, a normally distributed variable zt with zero mean and unit variance is generated for day t. The new (perturbed) value of the weather variable i, for station j, for day t (
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 is the resampled (unperturbed) value of the weather variable i for station j for day t, λ the bandwidth, and 
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 the conditional standard deviation of variable i and station j computed from the K nearest neighbors. Sharif and Burn (2007) also include a three step procedure that ensures a bounded variable such as rainfall is never generated with negative values (this sometimes may happen if the values of zt is small and negative).
The weather generator model, originally developed by Sharif and Burn (2007), is modified in this work. The driving force for the modification is guided by data requirements for the rainfall IDF analysis. The original weather generator model works by using daily weather data (maximum and minimum temperature, precipitation, etc.). However, for rainfall IDF analysis, durations ranging from 5 minutes to 24 hours are needed. In a rainfall IDF study by Prodanovic and Simonovic (2007), daily rainfall values are generated with a weather generator, which are then disaggregated into hourly intervals based on a nearest neighbour approach, while rainfall of shorter durations (ranging from 5 to 30 minutes) are estimated by multiplying hourly values by appropriate coefficients. 
The research performed in this paper adopts a modified weather generation methodology than presented above to take into account available data of shorter durations. This study uses for-the-day-maximum rainfall time series for 5, 10, 15, 30 minutes, and 1, 2, 6, 12 hours intervals, in addition to daily rainfall amounts available from Meteorological Service of Canada. For example, a 30 minute for-the-day-maximum represents the maximum recorded rainfall during any 30 minute period that day. Each station therefore contains a set of nine daily elements (5, 10, 15, 30 minutes, and 1, 2, 6, 12, and 24 hour) available for use in the weather generator. Since the for-the-day-maximum rainfall amounts can not be treated as separate variables, the original weather generation model of Sharif and Burn (2007) can not therefore be used. The modification proposed in this paper uses 24 hour rainfall totals as the main variable on which the weather generator operates. The potential set of nearest neighbours are selected for the 24 hour rainfall based on the same two week moving window (see above), from which a smaller set of K nearest neighbours is selected, and then a single value chosen as that day’s simulated value. The important difference here is that the model retains the K nearest neighbours for all sub-daily elements from the same day as for the 24 hour amounts. This selection mechanism implies that if the 24 hour rainfall of January 8, 1978 is selected by the weather generator model as the resampled value, all sub-daily elements will also use this day (i.e., January 8, 1978) as their resampled value as well. 
The problem with using sub-daily elements in the weather generator algorithm is missing data. Recall that the weather generator can not be simulated if the historic data record contains missing values (i.e., regional means can not be computed, and therefore the nearest neighbour selection and perturbation may be adversely affected). In studies by Sharif and Burn (2007) and Prodanovic and Simonovic (2007) variables used are temperature, precipitation, and rainfall, for which the missing values can easily be estimated if a dense gauge network exists. For daily values of weather variables this is easily performed with any interpolation method (Thiessen Polygon, Inversed Distance Weighting Method, etc.). However, an interpolation method can not be applied to the sub-daily time series data, as the data in this series represents for-the-day-maximum values that may be recorded at different times during the day. As a result, use of classical interpolation to estimate missing data can not be applied.

The weather generation algorithm is therefore modified to incorporate use of sub-daily data sets containing missing values. Missing sub-daily values do not play a role in the selection of the nearest neighbour (as these are selected based on daily values that can be interpolated), but present a problem in the application of perturbation mechanism. The perturbation mechanism uses conditional standard deviation and bandwidth calculated from the set of K nearest neighbours as a means to estimate the degree by how much each value can be perturbed. In the modification of the weather generator developed in this work, this problem is addressed in the following way: If the selected value for the element has a missing value, the simulated value for that element is not perturbed, but is kept as missing. If the selected element does not have a missing value, only values in its set of K nearest neighbours free of missing values are used to compute the conditional standard deviation and the bandwidth, therefore producing a perturbation for the element in question. The amount of perturbation therefore depends on how many non-missing values the set of K nearest neighbours has, thereby biasing the perturbation results. Investigation of the true extent of this bias is recommended for future research.
2.2 Rainfall IDF Analysis

IDF analysis is typically used to capture the essential characteristics of point rainfall for shorter durations. Such analysis provides a convenient tool for statistically summarizing regional rainfall information, and is often used in municipal storm water management and other engineering design application. The IDF analysis starts by gathering time series records of different durations (in this study, this if provided by weather generator model outputs). After time series data is gathered, annual extremes are extracted from the record for each duration. The annual extreme data is then fit to a probability distribution, in order to estimate rainfall quantities. The fit of the probability distribution is necessary, in order to standardize the character of rainfall across stations with widely varying lengths of record. The most widely accepted probability distribution used in analysis of extreme rainfall statistics is the Gumbel Extreme Value I distribution (also used by MTO, 1997; Vasiljevic, 2007), and is therefore adopted in this study.
3. case study

The region of southwestern Ontario, Canada is used as the study area in this work. This region is the most densely populated in Canada, housing approximately 10 million people (close to one third of all population of Canada). The region has a moderate humid continental climate, with hot humid summers and cold winters. Southwestern Ontario's climate is partly moderated by the surrounding Great Lakes, producing milder climate compared to other areas of the country. Annual precipitation ranges from 750 mm to 1000 mm, of which approximately 30% falls as snow. Severe thunderstorms are typical in June and July across the region, although they may occur anytime from March to November (due to collision of colder Arctic air and warm and moist Gulf air). Due to its close proximity to the Great Lakes, Southwestern Ontario is prone to severe weather, especially during the summer months when convective type storms produce localized short duration high intensity events.
Input data used in this study include rainfall gauge records for selected stations in southwestern Ontario provided by the Meteorological Service of Canada (MSC). Data sets used consist of for-the-day-maximum tipping bucket rain gauge data for 5, 10, 15, 30 minute, and 1, 2, 6 and 12 hour, along with daily rainfall (referred to as elements). Rainfall data sets are available from MSC for nine elements for the period 1961-2001, and are therefore used in this work. It is noted that daily rainfall records consist of relatively few missing values; on the contrary, the historic record for-the-day-maximums contains a large percentage of missing values. For the purposes of this paper, only the London station (MSC ID 6144475) results are shown.

3.1 Climate Change Scenarios
Global Circulation Model (GCM) output data is used together with a weather generating model to better capture the range of potential change of climatic conditions in the future. GCM output data is obtained from the website of the Canadian Climate Impacts Scenarios group at the University of Victoria, Canada (http://www.cics.uvic.ca). Time series data is selected for the grid point containing the southwestern Ontario region, for the time slice of 2040-2069, thus representing average climatic conditions for the year 2050. Historic global circulation data, also obtained from the University of Victoria, consists of data for period of 1961-1990 and represents the baseline global data. 

Two climate change scenarios are selected for this work: historic and the GCM B21 (the latter is also referred to as the wet scenario, as it represents future climate conditions that are warmer and wetter than present). This GCM scenario is selected as it forms a plausible case of what might future character of rainfall look like (and specifically extreme rainfall). The scenario is constructed in the following manner: Global data (baseline and GCM B21 time series) is used to compute monthly change fields between the periods of 1961-1990 and 2040-2069, which are then used to modify the locally observed historic data. The modified historic data is then used as input to the weather generator model, which, through shuffling and perturbation, produces long term synthetic sequences of weather data. In contrast, the historic scenario simply uses the locally observed data as input to the weather generator model to simulate weather episodes similar (but not identical) to those observed in the past. Note that the historic climate scenario uses the same shuffling and perturbation mechanisms described previously, and therefore may produce extreme rainfall values not observed in the historic record. Similar scenario analysis is adopted by Sharif and Burn (2007), and Prodanovic and Simonovic (2007).
Development of future climate change scenarios in this way integrates all available global and local climatic data to produce a range of potential future climatic conditions. The wet climate provides conditions where emphasis is placed on increased rainfall magnitude over the next century, while the historic climate emphasizes current conditions. The wet climate is used specifically to test the region's response to flooding, while the historic climate can be used in assessment of conditions similar to present. It is important to point out that both climates are equally likely. For the purpose of this work the most critical future climate is represented by the GCM B21 wet scenario, and is recommended when dealing with questions regarding the potential change in extreme rainfall magnitude and frequency resulting from climate change. 
3.2 Simulation Results and Discussion

The IDF curve produced by the MSC for London, Ontario is shown in Table 1, and is used for the comparison with the historic and GCM B21 wet simulation results. It should be noted that the IDF curve in Table 1 is developed by MSC using data sets for nine elements from years between 1941-2003. In this study however, data sets for years between 1961-2001 are used, as time series data between 1941-1961 are not available; furthermore, complete data sets between the period of 2001-2003 have not been included in the record, and therefore discarded in the current study. Casting away data was necessary as the weather generator model needs complete data sets, with as few missing values as possible.  

Weather generator simulations are performed using historic data between 1961-2001 on eight for-the-day-maximum rainfall elements (5, 10, 15, 30 minute, 1, 2, 6 and 12 hour), and daily rainfall totals. The historic simulation uses the observed data as is (without multiplying it by change fields), and shuffles and perturbs it according to the rules described previously. The GCM B21 wet simulations on the other hand, modifies the historic data by applying change fields first, followed by shuffling and perturbation. The simulations for each scenario are performed for 123 years (41 years of historic record simulated three times over), producing eight for-the-day-maximum rainfall elements, along with daily rainfall. IDF curves from simulated data (shown in Tables 2 and 3) are derived by fitting the Gumbel probability distribution to time series data of each element, and displaying quantile values for return periods between 2-100 years.
The results of the analysis show that the IDF curve values for the simulated historic scenario are slightly higher (Table 2) than similar values produced by MSC (Table 1). For most return periods, the simulated quantile values are between 10-20% higher than those supplied by the MSC. The difference is explained as follows: (i) different data sets are used (MSC uses 1941-2003, while the simulation uses 1961-2001), (ii) the simulated values use shuffling and perturbation mechanisms that push the historic data outside of the observed range, thereby affecting their frequency and magnitude, and (ii) the length of record in historic analysis is 61 years, while the simulated IDF curves uses 123 years).
Table 1: MSC IDF analysis for the historic 1941-2003 data

	Duration
	2 yr
	5 yr
	10 yr
	25 yr
	50 yr
	100 yr

	5 min
	9.1
	11.9
	13.8
	16.2
	18.0
	19.7

	10 min
	13.0
	17.8
	21.0
	25.0
	28.0
	30.9

	15 min
	15.6
	21.3
	25.1
	29.8
	33.3
	36.8

	30 min
	20.4
	28.2
	33.4
	39.9
	44.8
	49.6

	1 hr
	24.4
	35.3
	42.5
	51.6
	58.3
	65.0

	2 hr
	29.6
	41.6
	49.5
	59.6
	67.0
	74.4

	6 hr
	36.7
	48.2
	55.8
	65.4
	72.5
	79.6

	12 hr
	43.0
	54.7
	62.5
	72.4
	79.7
	87.0

	24 hr
	51.3
	66.8
	77.1
	90.0
	99.6
	109.2


Table 2: Simulated IDF curve for the historic scenario

	Duration
	2 yr
	5 yr
	10 yr
	25 yr
	50 yr
	100 yr

	5 min
	9.9
	13.1
	15.3
	17.9
	19.9
	21.9

	10 min
	15.0
	20.4
	24.0
	28.6
	31.9
	35.3

	15 min
	18.8
	25.7
	30.4
	36.2
	40.6
	44.9

	30 min
	24.9
	34.9
	41.5
	49.9
	56.1
	62.2

	1 hr
	29.7
	40.3
	47.4
	56.2
	62.8
	69.3

	2 hr
	35.2
	47.0
	54.9
	64.8
	72.1
	79.4

	6 hr
	44.1
	56.4
	64.5
	74.7
	82.3
	89.9

	12 hr
	48.6
	62.4
	71.6
	83.2
	91.9
	100.4

	24 hr
	52.3
	70.3
	82.3
	97.4
	108.6
	119.7


Table 4: Simulated IDF curve for the GCM B21 wet scenario

	Duration
	2 yr
	5 yr
	10 yr
	25 yr
	50 yr
	100 yr

	5 min
	11.0
	15.4
	18.3
	21.9
	24.7
	27.4

	10 min
	16.6
	23.8
	28.7
	34.7
	39.3
	43.7

	15 min
	20.1
	28.4
	33.9
	40.8
	45.9
	51.0

	30 min
	25.9
	35.9
	42.4
	50.8
	56.9
	63.1

	1 hr
	31.6
	43.4
	51.3
	61.2
	68.6
	75.9

	2 hr
	37.9
	51.6
	60.7
	72.1
	80.6
	89.1

	6 hr
	46.3
	60.3
	69.6
	81.2
	89.9
	98.5

	12 hr
	52.6
	68.8
	79.5
	93.0
	103.1
	113.0

	24 hr
	57.4
	77.4
	90.6
	107.2
	119.6
	131.9


An important observation is made by inspecting results of the IDF curve simulated under the GCM B21 wet scenario (Table 3). For all return periods and durations, this climate scenario shows roughly 30% higher magnitude of rainfall than the MSC IDF curves, and about 10-20% higher values when compared to the historic simulation scenario. Since the GCM B21 wet scenario is recommended for the study of high intensity short duration flooding conditions resulting from climatic change, this observation has major implications for the design, operation and maintenance of urban water infrastructure in the region.
4. Conclusions

As the climate changes in southwestern Ontario, rainfall patterns will most certainly change from what they have been historically. The analyses presented in this papers attempt to measure the change, and estimate impacts of changing climatic conditions on design, operation and maintenance of municipal water management infrastructure (such as roads, bridges, culverts, drains, sewer and conveyance systems, etc). The results are derived from the application of rainfall intensity duration frequency curves developed for the City of London under changing climatic conditions. The outputs of the study indicate that: (i) the rainfall magnitude will be different in the future, (ii) the GCM B21 wet climate scenario reveals significant increase in rainfall magnitude for a range of durations and return periods for this century, and (iii) the increase in rainfall intensity and magnitude has major implications on ways in which current (and future) municipal water management infrastructure is designed, operated, and maintained.
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